000830151 001__ 830151
000830151 005__ 20210129230431.0
000830151 020__ $$a978-3-319-57239-0 (print)
000830151 020__ $$a978-3-319-57240-6 (electronic)
000830151 0247_ $$2doi$$a10.1007/978-3-319-57240-6_23
000830151 0247_ $$2ISSN$$a0302-9743
000830151 0247_ $$2ISSN$$a1611-3349
000830151 0247_ $$2WOS$$aWOS:000425356700023
000830151 037__ $$aFZJ-2017-03728
000830151 041__ $$aEnglish
000830151 082__ $$a004
000830151 1001_ $$0P:(DE-HGF)0$$aBurgeth, Bernhard$$b0$$eCorresponding author
000830151 1112_ $$a13th International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing$$cFontainebleau$$d2017-05-15 - 2017-05-17$$gISMM 2017$$wFrance
000830151 245__ $$aA Unified Approach to PDE-Driven Morphology for Fields of Orthogonal and Generalized Doubly-Stochastic Matrices
000830151 260__ $$aCham$$bSpringer International Publishing$$c2017
000830151 29510 $$aMathematical Morphology and Its Applications to Signal and Image Processing / Angulo, Jesús (Editor)   ; Cham : Springer International Publishing, 2017, Chapter 23 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-319-57239-0=978-3-319-57240-6
000830151 300__ $$a284 - 295
000830151 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$mcontrib
000830151 3367_ $$2ORCID$$aBOOK_CHAPTER
000830151 3367_ $$07$$2EndNote$$aBook Section
000830151 3367_ $$2DRIVER$$abookPart
000830151 3367_ $$2BibTeX$$aINBOOK
000830151 3367_ $$2DataCite$$aOutput Types/Book chapter
000830151 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1495453905_25481
000830151 4900_ $$aLecture Notes in Computer Science$$v10225
000830151 520__ $$aIn continuous morphology two nonlinear partial differential equations (PDEs) together with specialized numerical solution schemes are employed to mimic the fundamental processes of dilation and erosion on a scalar valued image. Some attempts to tackle in a likewise manner the processing of higher order data, such as color images or even matrix valued images, so-called matrix fields, have been made. However, research has been focused almost exclusively on real symmetric matrices. Fields of non-symmetric matrices, for example rotation matrices, defy a unified approach. That is the goal of this article. First, the framework for symmetric matrices is extended to complex-valued Hermitian matrices. The later offer sufficient degrees of freedom within their structures such that, in principle, any class of real matrices may be mapped in a one-to-one manner onto a suitable subset of Hermitian matrices, where image processing may take place. Second, both the linear mapping and its inverse are provided. However, the non-linearity of dilation and erosion processes requires a backprojection onto the original class of matrices. Restricted by visualization shortcomings, the steps of this procedure are applied to the set of 3D-rotation matrices and the set of generalized doubly-stochastic matrices.
000830151 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000830151 588__ $$aDataset connected to CrossRef Book Series
000830151 7001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b1$$ufzj
000830151 773__ $$a10.1007/978-3-319-57240-6_23
000830151 8564_ $$uhttps://juser.fz-juelich.de/record/830151/files/chp_10.1007_978-3-319-57240-6_23.pdf$$yRestricted
000830151 8564_ $$uhttps://juser.fz-juelich.de/record/830151/files/chp_10.1007_978-3-319-57240-6_23.gif?subformat=icon$$xicon$$yRestricted
000830151 8564_ $$uhttps://juser.fz-juelich.de/record/830151/files/chp_10.1007_978-3-319-57240-6_23.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000830151 8564_ $$uhttps://juser.fz-juelich.de/record/830151/files/chp_10.1007_978-3-319-57240-6_23.jpg?subformat=icon-180$$xicon-180$$yRestricted
000830151 8564_ $$uhttps://juser.fz-juelich.de/record/830151/files/chp_10.1007_978-3-319-57240-6_23.jpg?subformat=icon-640$$xicon-640$$yRestricted
000830151 8564_ $$uhttps://juser.fz-juelich.de/record/830151/files/chp_10.1007_978-3-319-57240-6_23.pdf?subformat=pdfa$$xpdfa$$yRestricted
000830151 909CO $$ooai:juser.fz-juelich.de:830151$$pVDB
000830151 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b1$$kFZJ
000830151 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000830151 9141_ $$y2017
000830151 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000830151 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830151 920__ $$lyes
000830151 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000830151 980__ $$acontb
000830151 980__ $$aVDB
000830151 980__ $$acontrib
000830151 980__ $$aI:(DE-Juel1)JSC-20090406
000830151 980__ $$aUNRESTRICTED