001     830153
005     20220930130123.0
024 7 _ |a 10.1088/1367-2630/aa6ece
|2 doi
024 7 _ |a 2128/14534
|2 Handle
024 7 _ |a WOS:000402532100002
|2 WOS
024 7 _ |a altmetric:20275909
|2 altmetric
037 _ _ |a FZJ-2017-03730
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Heß, Volkmar
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Magnetic subunits within a single molecule–surface hybrid
260 _ _ |a [Bad Honnef]
|c 2017
|b Dt. Physikalische Ges.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1495531341_18975
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic molecule–surface hybrids are ideal building blocks for molecular spintronic devices due to their appealing tailorable magnetic properties and nanoscale size. So far, assemblies of interacting molecular-surface hybrids needed for spintronic functionality were generated by depositing aromatic molecules onto transition-metal surfaces, resulting in a random arrangement of hybrid magnets due to the inherent and strong hybridization. Here, we demonstrate the formation of multiple intramolecular subunits within a single molecule–surface hybrid by means of spin-polarized scanning tunneling microscopy experiments and ab initio density functional theory calculations. This novel effect is realized by depositing a polycyclic aromatic molecule on a magnetic surface. A highly asymmetric chiral adsorption position induces different structural, electronic, and magnetic properties in each aromatic ring of the molecule. In particular, the induced molecular spin polarization near the Fermi energy varies among the rings due to site- and spin-dependent molecule–surface hybridization. Our results showcase a possible organic chemistry route of tailoring geometrically well-defined assemblies of magnetically distinguishable subunits in molecule–surface hybrids.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Friedrich, Rico
|0 P:(DE-Juel1)157874
|b 1
700 1 _ |a Matthes, Frank
|0 P:(DE-Juel1)130822
|b 2
700 1 _ |a Caciuc, Vasile
|0 P:(DE-Juel1)130583
|b 3
700 1 _ |a Atodiresei, Nicolae
|0 P:(DE-Juel1)130513
|b 4
|e Corresponding author
700 1 _ |a Bürgler, Daniel E
|0 P:(DE-Juel1)130582
|b 5
|e Corresponding author
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 6
700 1 _ |a Schneider, Claus Michael
|0 P:(DE-Juel1)130948
|b 7
773 _ _ |a 10.1088/1367-2630/aa6ece
|g Vol. 19, no. 5, p. 053016 -
|0 PERI:(DE-600)1464444-7
|n 5
|p 053016 -
|t New journal of physics
|v 19
|y 2017
|x 1367-2630
856 4 _ |u https://juser.fz-juelich.de/record/830153/files/He%C3%9F_2017_New_J._Phys._19_053016.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830153/files/He%C3%9F_2017_New_J._Phys._19_053016.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:830153
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157874
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130822
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130583
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130582
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130948
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEW J PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 3
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21