000830200 001__ 830200
000830200 005__ 20231025093223.0
000830200 0247_ $$2Handle$$a2128/14661
000830200 0247_ $$2ISSN$$a1866-1807
000830200 020__ $$a978-3-95806-242-9
000830200 037__ $$aFZJ-2017-03774
000830200 041__ $$aEnglish
000830200 1001_ $$0P:(DE-Juel1)130855$$aMüller, Mathias Christian Thomas David$$b0$$eCorresponding author$$gmale$$ufzj
000830200 245__ $$aSpin-wave excitations and electron-magnonscattering in elementary ferromagnets from $\textit{ab initio}4 many-body perturbation theory$$f- 2017-06-01
000830200 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek Verlag$$c2017
000830200 300__ $$aVI, 174 S.
000830200 3367_ $$2DataCite$$aOutput Types/Dissertation
000830200 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000830200 3367_ $$2ORCID$$aDISSERTATION
000830200 3367_ $$2BibTeX$$aPHDTHESIS
000830200 3367_ $$02$$2EndNote$$aThesis
000830200 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1497254866_22215
000830200 3367_ $$2DRIVER$$adoctoralThesis
000830200 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v146
000830200 502__ $$aRWTH Aachen, Diss., 2017$$bDr.$$cRWTH Aachen$$d2017
000830200 520__ $$aIn this thesis, an $\textit{ab initio}$ theoretical framework for the investigation of spin excitations and the electron-magnon scattering is developed within many-body perturbation theory and implemented in the full-potential linearized augmented-plane-wave method. The spin excitations, including single-particle Stoner excitations and collective spin waves, are accessible through the magnetic response function, which is obtained by the solution of a Bethe-Salpeter equation employing four-point functions. These four-point functions are represented in a Wannier-function basis, which allows to exploit the short-range behavior of the screened interaction in metallic systems by truncating the matrices in real space. The spin excitation spectrum of ferromagnetic materials contains an acoustic magnon mode whose energy, in the absence of spin-orbit coupling, vanishes in the long-wavelength limit as a consequence of the spontaneously broken spin-rotation symmetry in these materials according to the Goldstone theorem. However, in numerical realizations of the magnetic response function the acoustic magnon mode exhibits a small but finite gap in the Goldstone-mode limit. We investigate this violation of the Goldstone theorem and present anapproach that implements the magnetic response function employing the properly renormalized Green function instead of the Kohn-Sham one. This much more expensive approach shows a substantial reduction of the gap error. In addition, we discuss a correction scheme motivated by the one-band Hubbard model that cures the fundamental inconsistency of using the Kohn-Sham Green function by adjusting the exchange splitting. We present corrected magnon spectra for the elementary ferromagnets iron, cobalt, and nickel. We then employ the T-matrix approach for the description of the electron-magnon interaction within the GT approximation, which can be combined with the GW approximation without the need of double-counting corrections. The multiple-scattering T matrix is part of the four-point magnetic response function and describes the correlated propagation of electron-hole pairs with opposite spins from which the collective spin excitations arise. We apply the GT approximation to Fe, Co, and Ni and present renormalized spectral functions. The GT approximation leads to a pronounced spin-dependent lifetime broadening of the quasiparticle states to the extent that the quasiparticle character is virtually lost in certain energy regions. In iron, the spectral functions exhibit an additional quasiparticle peak indicating the emergence of a new quasiparticle. We discuss the features of this quasiparticle state that forms out of a superposition of single-particle and magnon excitations. In addition, we find kink structures in the quasiparticle dispersion of free-electron-like bands of cobalt and nickel.
000830200 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000830200 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000830200 650_7 $$xDiss.
000830200 8564_ $$uhttps://juser.fz-juelich.de/record/830200/files/Schluesseltech_146.pdf$$yOpenAccess
000830200 8564_ $$uhttps://juser.fz-juelich.de/record/830200/files/Schluesseltech_146.gif?subformat=icon$$xicon$$yOpenAccess
000830200 8564_ $$uhttps://juser.fz-juelich.de/record/830200/files/Schluesseltech_146.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000830200 8564_ $$uhttps://juser.fz-juelich.de/record/830200/files/Schluesseltech_146.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000830200 8564_ $$uhttps://juser.fz-juelich.de/record/830200/files/Schluesseltech_146.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000830200 8564_ $$uhttps://juser.fz-juelich.de/record/830200/files/Schluesseltech_146.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000830200 909CO $$ooai:juser.fz-juelich.de:830200$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000830200 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000830200 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000830200 9141_ $$y2017
000830200 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130855$$aForschungszentrum Jülich$$b0$$kFZJ
000830200 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000830200 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000830200 920__ $$lyes
000830200 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000830200 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1
000830200 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000830200 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000830200 980__ $$aphd
000830200 980__ $$aVDB
000830200 980__ $$aUNRESTRICTED
000830200 980__ $$abook
000830200 980__ $$aI:(DE-Juel1)PGI-1-20110106
000830200 980__ $$aI:(DE-Juel1)IAS-1-20090406
000830200 980__ $$aI:(DE-82)080009_20140620
000830200 980__ $$aI:(DE-82)080012_20140620
000830200 9801_ $$aFullTexts