000830206 001__ 830206
000830206 005__ 20210129230440.0
000830206 0247_ $$2doi$$a10.1016/j.ultramic.2016.12.011
000830206 0247_ $$2ISSN$$a0304-3991
000830206 0247_ $$2ISSN$$a1879-2723
000830206 0247_ $$2WOS$$aWOS:000403992200006
000830206 037__ $$aFZJ-2017-03780
000830206 082__ $$a570
000830206 1001_ $$0P:(DE-HGF)0$$aBangert, U.$$b0$$eCorresponding author
000830206 245__ $$aIon-beam modification of 2-D materials - single implant atom analysis via annular dark-field electron microscopy
000830206 260__ $$aAmsterdam$$bElsevier Science$$c2017
000830206 3367_ $$2DRIVER$$aarticle
000830206 3367_ $$2DataCite$$aOutput Types/Journal article
000830206 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1496058513_26220
000830206 3367_ $$2BibTeX$$aARTICLE
000830206 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830206 3367_ $$00$$2EndNote$$aJournal Article
000830206 520__ $$aFunctionalisation of two-dimensional (2-D) materials via low energy ion implantation could open possibilities for fabrication of devices based on such materials. Nanoscale patterning and/or electronically doping can thus be achieved, compatible with large scale integrated semiconductor technologies. Using atomic resolution High Angle Annular Dark Field (HAADF) scanning transmission electron microscopy supported by image simulation, we show that sites and chemical nature of individual implants/ dopants in graphene, as well as impurities in hBN, can uniquely and directly be identified on grounds of their position and their image intensity in accordance with predictions from Z-contrast theories. Dopants in graphene (e.g., N) are predominantly substitutional. In other 2-Ds, e.g. dichalcogenides, the situation is more complicated since implants can be embedded in different layers and substitute for different elements. Possible configurations of Se-implants in MoS2 are discussed and image contrast calculations performed. Implants substituting for S in the top or bottom layer can undoubtedly be identified. We show, for the first time, using HAADF contrast measurement that successful Se-integration into MoS2 can be achieved via ion implantation, and we demonstrate the possibility of HAADF image contrast measurements for identifying impurities and dopants introduced into in 2-Ds.
000830206 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000830206 588__ $$aDataset connected to CrossRef
000830206 7001_ $$0P:(DE-HGF)0$$aStewart, A.$$b1
000830206 7001_ $$0P:(DE-HGF)0$$aO’Connell, E.$$b2
000830206 7001_ $$0P:(DE-HGF)0$$aCourtney, E.$$b3
000830206 7001_ $$0P:(DE-HGF)0$$aRamasse, Q.$$b4
000830206 7001_ $$0P:(DE-HGF)0$$aKepaptsoglou, D.$$b5
000830206 7001_ $$0P:(DE-HGF)0$$aHofsäss, H.$$b6
000830206 7001_ $$0P:(DE-HGF)0$$aAmani, J.$$b7
000830206 7001_ $$0P:(DE-Juel1)167206$$aTu, J.-S.$$b8
000830206 7001_ $$0P:(DE-Juel1)145316$$aKardynal, B.$$b9
000830206 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2016.12.011$$gVol. 176, p. 31 - 36$$p31 - 36$$tUltramicroscopy$$v176$$x0304-3991$$y2017
000830206 8564_ $$uhttps://juser.fz-juelich.de/record/830206/files/1-s2.0-S0304399116303813-main.pdf$$yRestricted
000830206 8564_ $$uhttps://juser.fz-juelich.de/record/830206/files/1-s2.0-S0304399116303813-main.gif?subformat=icon$$xicon$$yRestricted
000830206 8564_ $$uhttps://juser.fz-juelich.de/record/830206/files/1-s2.0-S0304399116303813-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000830206 8564_ $$uhttps://juser.fz-juelich.de/record/830206/files/1-s2.0-S0304399116303813-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000830206 8564_ $$uhttps://juser.fz-juelich.de/record/830206/files/1-s2.0-S0304399116303813-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000830206 8564_ $$uhttps://juser.fz-juelich.de/record/830206/files/1-s2.0-S0304399116303813-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000830206 909CO $$ooai:juser.fz-juelich.de:830206$$pVDB
000830206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167206$$aForschungszentrum Jülich$$b8$$kFZJ
000830206 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b9$$kFZJ
000830206 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000830206 9141_ $$y2017
000830206 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000830206 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2015
000830206 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830206 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830206 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000830206 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000830206 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000830206 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830206 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000830206 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830206 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830206 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000830206 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000830206 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000830206 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000830206 920__ $$lyes
000830206 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000830206 980__ $$ajournal
000830206 980__ $$aVDB
000830206 980__ $$aI:(DE-Juel1)PGI-9-20110106
000830206 980__ $$aUNRESTRICTED