000830220 001__ 830220
000830220 005__ 20240709074132.0
000830220 0247_ $$2doi$$a10.1002/2016JD025621
000830220 0247_ $$2ISSN$$a0148-0227
000830220 0247_ $$2ISSN$$a2156-2202
000830220 0247_ $$2ISSN$$a2169-897X
000830220 0247_ $$2ISSN$$a2169-8996
000830220 0247_ $$2WOS$$aWOS:000396119200003
000830220 0247_ $$2Handle$$a2128/16028
000830220 037__ $$aFZJ-2017-03794
000830220 082__ $$a550
000830220 1001_ $$0P:(DE-HGF)0$$aEhard, B.$$b0$$eCorresponding author
000830220 245__ $$aHorizontal propagation of large amplitude mountain waves in the vicinity of the polar night jet
000830220 260__ $$aHoboken, NJ$$bWiley$$c2017
000830220 3367_ $$2DRIVER$$aarticle
000830220 3367_ $$2DataCite$$aOutput Types/Journal article
000830220 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1512111816_28148
000830220 3367_ $$2BibTeX$$aARTICLE
000830220 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830220 3367_ $$00$$2EndNote$$aJournal Article
000830220 520__ $$aWe analyze a large-amplitude mountain wave event, which was observed by a ground-based lidar above New Zealand between 31 July and 1 August 2014. Besides the lidar observations, European Centre for Medium-Range Weather Forecasts (ECMWF) data, satellite observations, and ray tracing simulations are utilized in this study. It is found that the propagation of mountain waves into the middle atmosphere is influenced by two different processes at different stages of the event. At the beginning of the event, instabilities in a weak wind layer cause wave breaking in the lower stratosphere. During the course of the event the mountain waves propagate to higher altitudes and are refracted southward toward the polar night jet due to the strong meridional shear of the zonal wind. As the waves propagate out of the observational volume, the ground-based lidar observes no mountain waves in the mesosphere. Ray tracing simulations indicate that the mountain waves propagated to mesospheric altitudes south of New Zealand where the polar night jet advected the waves eastward. These results underline the importance of considering horizontal propagation of gravity waves, e.g., when analyzing locally confined observations of gravity waves.
000830220 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000830220 588__ $$aDataset connected to CrossRef
000830220 7001_ $$0P:(DE-HGF)0$$aKaifler, B.$$b1
000830220 7001_ $$0P:(DE-HGF)0$$aDörnbrack, A.$$b2
000830220 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b3$$ufzj
000830220 7001_ $$0P:(DE-HGF)0$$aEckermann, S.$$b4
000830220 7001_ $$0P:(DE-HGF)0$$aBramberger, M.$$b5
000830220 7001_ $$0P:(DE-HGF)0$$aGisinger, S.$$b6
000830220 7001_ $$0P:(DE-HGF)0$$aKaifler, N.$$b7
000830220 7001_ $$0P:(DE-HGF)0$$aLiley, B.$$b8
000830220 7001_ $$0P:(DE-HGF)0$$aWagner, J.$$b9
000830220 7001_ $$0P:(DE-HGF)0$$aRapp, M.$$b10
000830220 773__ $$0PERI:(DE-600)2016800-7$$a10.1002/2016JD025621$$gVol. 122, no. 3, p. 1423 - 1436$$n3$$p1423 - 1436$$tJournal of geophysical research / Atmospheres$$v122$$x0148-0227$$y2017
000830220 8564_ $$uhttps://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.pdf$$yPublished on 2017-02-02. Available in OpenAccess from 2017-08-02.
000830220 8564_ $$uhttps://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.gif?subformat=icon$$xicon$$yPublished on 2017-02-02. Available in OpenAccess from 2017-08-02.
000830220 8564_ $$uhttps://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-1440$$xicon-1440$$yPublished on 2017-02-02. Available in OpenAccess from 2017-08-02.
000830220 8564_ $$uhttps://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-180$$xicon-180$$yPublished on 2017-02-02. Available in OpenAccess from 2017-08-02.
000830220 8564_ $$uhttps://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-640$$xicon-640$$yPublished on 2017-02-02. Available in OpenAccess from 2017-08-02.
000830220 8564_ $$uhttps://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-02-02. Available in OpenAccess from 2017-08-02.
000830220 909CO $$ooai:juser.fz-juelich.de:830220$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000830220 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b3$$kFZJ
000830220 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000830220 9141_ $$y2017
000830220 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830220 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000830220 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000830220 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830220 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000830220 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830220 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000830220 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES : 2015
000830220 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000830220 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830220 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830220 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000830220 9801_ $$aFullTexts
000830220 980__ $$ajournal
000830220 980__ $$aVDB
000830220 980__ $$aUNRESTRICTED
000830220 980__ $$aI:(DE-Juel1)IEK-7-20101013
000830220 981__ $$aI:(DE-Juel1)ICE-4-20101013