001     830220
005     20240709074132.0
024 7 _ |a 10.1002/2016JD025621
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-897X
|2 ISSN
024 7 _ |a 2169-8996
|2 ISSN
024 7 _ |a WOS:000396119200003
|2 WOS
024 7 _ |a 2128/16028
|2 Handle
037 _ _ |a FZJ-2017-03794
082 _ _ |a 550
100 1 _ |a Ehard, B.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Horizontal propagation of large amplitude mountain waves in the vicinity of the polar night jet
260 _ _ |a Hoboken, NJ
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512111816_28148
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We analyze a large-amplitude mountain wave event, which was observed by a ground-based lidar above New Zealand between 31 July and 1 August 2014. Besides the lidar observations, European Centre for Medium-Range Weather Forecasts (ECMWF) data, satellite observations, and ray tracing simulations are utilized in this study. It is found that the propagation of mountain waves into the middle atmosphere is influenced by two different processes at different stages of the event. At the beginning of the event, instabilities in a weak wind layer cause wave breaking in the lower stratosphere. During the course of the event the mountain waves propagate to higher altitudes and are refracted southward toward the polar night jet due to the strong meridional shear of the zonal wind. As the waves propagate out of the observational volume, the ground-based lidar observes no mountain waves in the mesosphere. Ray tracing simulations indicate that the mountain waves propagated to mesospheric altitudes south of New Zealand where the polar night jet advected the waves eastward. These results underline the importance of considering horizontal propagation of gravity waves, e.g., when analyzing locally confined observations of gravity waves.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kaifler, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dörnbrack, A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 3
|u fzj
700 1 _ |a Eckermann, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bramberger, M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gisinger, S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kaifler, N.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Liley, B.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wagner, J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Rapp, M.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1002/2016JD025621
|g Vol. 122, no. 3, p. 1423 - 1436
|0 PERI:(DE-600)2016800-7
|n 3
|p 1423 - 1436
|t Journal of geophysical research / Atmospheres
|v 122
|y 2017
|x 0148-0227
856 4 _ |y Published on 2017-02-02. Available in OpenAccess from 2017-08-02.
|u https://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.pdf
856 4 _ |y Published on 2017-02-02. Available in OpenAccess from 2017-08-02.
|x icon
|u https://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.gif?subformat=icon
856 4 _ |y Published on 2017-02-02. Available in OpenAccess from 2017-08-02.
|x icon-1440
|u https://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-02-02. Available in OpenAccess from 2017-08-02.
|x icon-180
|u https://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-180
856 4 _ |y Published on 2017-02-02. Available in OpenAccess from 2017-08-02.
|x icon-640
|u https://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-640
856 4 _ |y Published on 2017-02-02. Available in OpenAccess from 2017-08-02.
|x pdfa
|u https://juser.fz-juelich.de/record/830220/files/Ehard_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:830220
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129143
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21