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Geometrical contributions to the exchange constants: Free electrons with spin-orbit interaction
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Using thermal quantum field theory, we derive an expression for the exchange constant that resembles
Fukuyama’s formula for orbital magnetic susceptibility (OMS). Guided by this formal analogy between the
exchange constant and OMS, we identify a contribution to the exchange constant that arises from the geometrical
properties of the band structure in mixed phase space. We compute the exchange constants for free electrons and
show that the geometrical contribution is generally important. Our formalism allows us to study the exchange
constants in the presence of spin-orbit interaction. Thereby, we find sizable differences between the exchange
constants of helical and cycloidal spin spirals. Furthermore, we discuss how to calculate the exchange constants
based on a gauge-field approach in the case of the Rashba model with an additional exchange splitting, and we
show that the exchange constants obtained from this gauge-field approach are in perfect agreement with those
obtained from the quantum field theoretical method.
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I. INTRODUCTION

While the Berry phase has been shown to be important
for spin dynamics [1–3], less attention has been paid to
geometrical aspects in the exchange constants. Recently, it
has been shown that the Dzyaloshinskii-Moriya interaction
(DMI), i.e., the asymmetric exchange, can be computed from
a Berry phase approach, in which the geometrical properties
of the electronic structure in mixed phase space play a key
role [4–7]. DMI describes the linear change of the free
energy with gradients in the magnetization direction. The
effect of such noncollinear magnetic textures on conduction
electrons can be accounted for by effective magnetic potentials
[8,9]. Since orbital magnetism leads to a linear change of
the free energy when an external magnetic field is applied,
several formal analogies exist between the modern theory of
orbital magnetization [10] and the Berry-phase approach to
DMI [4,6], because the latter captures the free-energy change
linear in an effective magnetic potential generated by the
noncollinear magnetic texture.

Similarly, the (symmetric) exchange constants describe the
quadratic change of the free energy with gradients in the mag-
netization direction, while the orbital magnetic susceptibility
(OMS) captures the quadratic change of the free energy with an
applied magnetic field [11]. Therefore, it is natural to suspect
formal analogies between the theories of OMS on the one
hand and exchange constants on the other hand, which we will
investigate in detail in this paper. For this purpose, we use
thermal quantum field theory in order to express the exchange
constants in terms of torque operators, velocity operators, and
the Green’s functions of a collinear ferromagnet, and we obtain
a formula that resembles Fukuyama’s result for OMS [11,12].

Recently, geometrical contributions to OMS have been
identified and shown to be generally significant and sometimes
even dominant [13,14]. These contributions arise from the
reciprocal-space Berry curvature and quantum metric, which
describe geometrical properties of the electronic structure. We
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will show that, as a consequence of the formal analogies be-
tween OMS and exchange, similar geometrical contributions
to the exchange constants can be identified, which arise from
the Berry curvature and the quantum metric in mixed phase
space as well as from the quantum metric in real space. To
achieve this, we rewrite our Fukuyama-type formula for the
exchange constant in terms of these geometrical properties.

Both the Fukuyama-type formula as well as the geomet-
rical expression allow us to obtain the exchange constants
directly from the electronic structure. Compared to the frozen
spin-spiral approach [15,16], such a formulation has the
advantage that it becomes easier to investigate the relationship
to spintronic and spincaloritronic effects. For example, the
Berry phase theory of DMI allows us to relate DMI to the
spin-orbit torque [4], to ground-state spin currents [7], and
to ground-state energy currents, which need to be subtracted
in order to extract the inverse thermal spin-orbit torque [6].
Similarly, torques due to the exchange interaction need to be
considered in the theory of thermally induced spin-transfer
torques [17], and a Green’s function expression of exchange
is well suited for this purpose.

For the calculation of exchange constants in realistic ma-
terials, powerful techniques exist already. Besides the frozen
spin-spiral approach [15,16,18,19], the method of infinitesimal
rotations of magnetic moments and the Lichtenstein formula
are popular [20–22]. In this work, we focus on free electrons.
However, the extension of the Fukuyama-type approach
to calculations of exchange constants in realistic materials
within the framework of first-principles density-functional
theory has promising practical and technical perspectives.
For example, a Fukuyama-type formula for the exchange
constants might be an attractive alternative when spin-orbit
interaction (SOI) is present, because in this case the frozen
spin-spiral approach cannot be used and one needs to resort to
supercell methods or use multiple scattering theory [22], which
cannot be combined easily with all available density-functional
theory codes. Similarly, for the first-principles simulation of
the current-induced motion of domain walls and skyrmions,
which involves complicated effects such as chiral damping
[23,24] and nonadiabatic torque [25], and for the calculation
of electronic transport properties—such as the topological
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Hall effect [26]—in these noncollinear magnetic textures, an
approach that specifies the response to applied electric currents
in terms of a coefficient matrix that is expanded in orders of the
magnetization gradients is desirable. Since exchange constants
are well known for many materials, their calculation from a
Fukuyama-type expression can be used for code-testing with
the goal to extend the method to the mentioned spintronics
effects.

This paper is structured as follows: In Sec. II A we briefly
review the derivation of Fukuyama’s formula for OMS, which
serves as a basis to derive a Fukuyama-type expression
for the exchange constants in Sec. II B. In Sec. III A we
discuss how to express OMS in terms of reciprocal-space
curvatures and quantum metrics, which sets the stage to
express the exchange constants in terms of mixed phase-space
curvatures and quantum metrics in Sec. III B. In Sec. IV we
show that—despite the spin-orbit interaction—the exchange
constants can be obtained easily from a gauge-field approach
in the case of the one-dimensional Rashba model. In Sec. V A
we discuss the exchange constants of the one-dimensional
Rashba model. We show that the results obtained from the
Fukuyama-type approach agree with those of the gauge-field
approach, thereby demonstrating the validity of the Fukuyama-
type expression even in the presence of SOI. Additionally,
we discuss the geometrical contributions. In Sec. V B we
investigate the exchange constants in the two-dimensional
Rashba model. The paper ends with a summary in Sec. VI.

II. FUKUYAMA METHOD

A. Orbital magnetic susceptibility

The orbital magnetic susceptibility tensor χ is defined by

δMorb =
1

µ0
χ B, (1)

where B is an applied external magnetic field and δMorb is
the change of the orbital magnetization due to the application
of B. µ0 is the vacuum permeability. The zz element of the
orbital magnetic susceptibility tensor is given by the Fukuyama
formula [11]

χ zz =
µ0e

2

2βh̄2

∫

ddk

(2π )d

∑

p

Tr

×
[

GM
k (iEp)vx

kG
M
k (iEp)vy

kG
M
k (iEp)vx

kG
M
k (iEp)vy

k

]

,

(2)

where d is the dimension (d = 2 or 3). In the case of
two-dimensional systems, such as a graphene sheet or a thin
film, the z direction is oriented perpendicular to the sheet or
thin film. vx

k and v
y

k are the x and y components of the velocity
operator vk = e−ik·rveik·r in crystal momentum representa-
tion, respectively. β = (kBT )−1 is the inverse temperature, kB

is the Boltzmann constant, and Ep = β−1(2p + 1)π are the
Matsubara points, and

GM
k (iEp) = h̄[iEp − Hk]−1 (3)

is the Matsubara Green’s function, where Hk is the Hamilto-
nian in the crystal momentum representation.

Using the residue theorem, the summation over Matsubara
points can be replaced by an energy integration along the real
energy axis as follows:

χ zz = −
µ0e

2

2πh̄2

∫

ddk

(2π )d
Im

∫

d E f (E)Tr

×
[

GR
k (E)vx

kG
R
k (E)vy

kG
R
k (E)vx

kG
R
k (E)vy

k

]

, (4)

where f (E) is the Fermi function and

GR
k (E) = h̄[E − Hk + i0+]−1 (5)

is the retarded Green’s function.
In the following, we briefly sketch Fukuyama’s derivation

[11] of Eq. (2), which serves as a preparation for obtaining
an expression for the exchange constants in Sec. II B. Since
the vector potential of a homogeneous magnetic field is not
compatible with Bloch boundary conditions, we consider the
spatially oscillating vector potential

A(x) =
B0

q
sin(qx)êy (6)

with corresponding magnetic field

B(x) = ∇ × A(x) = B0 cos(qx)êz, (7)

where êy and êz are unit vectors in the y and z directions,
respectively. At the final stage of the calculation, the limit
q → 0 will be taken. According to Eq. (1), this spatially
oscillating magnetic field induces a spatially oscillating orbital
magnetization. The interaction between this induced orbital
magnetization and the magnetic field modifies the free-energy
density by the amount

δF = −
1

2

〈

δMz
orbB

z
〉

= −
1

2µ0
χ zz〈BzBz〉

= −
1

4µ0
χ zz[B0]2, (8)

where 〈· · · 〉 denotes spatial averaging. The expression for χ zz

can be found by determining δF from thermal quantum field
theory and equating the result with Eq. (8).

The free energy is obtained from the partition function
� as

F = −
1

β
ln �. (9)

The modification of � due to the applied magnetic field
B(x) is determined from perturbation theory. For example,
the contribution from second-order perturbation theory is
given by

�(2) =
1

2h̄2

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2Tr[e−βH Tτ δHI(τ1)δHI(τ2)]

=
�(0)

2h̄2

∫ h̄β

0
dτ1

∫ h̄β

0
dτ2 〈Tτ δHI(τ1)δHI(τ2)〉, (10)

where �(0) is the partition function of the unperturbed system,
Tτ is the time-ordering operator, H is the unperturbed Hamilto-
nian, and δHI(τ ) = eτH/h̄δHe−τH/h̄ denotes the perturbation
in the interaction picture.
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Minimal coupling leads to two perturbation terms,

δH (1) =
e

2
[v · A(x) + A(x) · v] (11)

and

δH (2) =
e2

2me

A2(x) =
e2B2

0

2meq2
sin2(qx)

=
e2B2

0

4meq2
[1 − cos(2qx)], (12)

where e > 0 is the elementary positive charge and me is the
electron mass. To determine χ zz from Eq. (8), we need to find
the modification of the free-energy density δF that arises from
the perturbations δH (1) and δH (2) and that is second order in
B0. Thus, we need to perform second-order perturbation theory
with δH (1) and first-order perturbation theory with δH (2).

In second quantization, the perturbation δH (1) is given by

δH (1) =
eB0

4iq

×
∑

knm

{[

〈uk+n|v
y

k+
|uk−m〉+〈uk+n|v

y

k−
|uk−m〉

]

c
†
k+nck−m

−
[

〈uk−n|v
y

k−
|uk+m〉 + 〈uk−n|v

y

k+
|uk+m〉

]

c
†
k−nck+m

}

,

(13)

where k+ = k + q/2 and k− = k − q/2 and q = q êx . |ukn〉

denotes the eigenfunctions of the unperturbed Hamiltonian
Hk, such that Hk|ukn〉 = Ekn|ukn〉, where Ekn is the band
energy. c

†
kn and ckn are creation and annihilation operators

of an electron in band n at k-point k, respectively. Second-
order perturbation theory with respect to δH (1) modifies the
free-energy density by the amount

δF =
e2B2

0

4q2βh̄2

∫

ddk

(2π )d

∑

p

Tr
[

GM
k+

(iEp)vy

kG
M
k−

(iEp)vy

k

]

.

(14)

When the trace in Eq. (14) is Taylor-expanded in q, the zeroth-
order term leads to a contribution to δF that diverges like
q−2 in the limit q → 0. This divergent term cancels out with
the contribution from the piece e2B2

0/(4meq
2) in δH (2). The

oscillating piece −e2B2
0 cos(2qx)/(4meq

2) in δH (2) averages
out in first-order perturbation theory. The q-quadratic term
from the Taylor expansion of the trace in Eq. (14) yields the
free-energy change

δF = −
e2B2

0

8βh̄2

∫

ddk

(2π )d

∑

p

Tr

[

∂GM
k (iEp)

∂kx
v

y

k

∂GM
k (iEp)

∂kx
v

y

k

]

.

(15)

With the help of Eq. (8), we obtain the susceptibility

χ zz =
e2µ0

2βh̄2

∫

ddk

(2π )d

∑

p

Tr

[

∂GM
k (iEp)

∂kx
v

y

k

∂GM
k (iEp)

∂kx
v

y

k

]

.

(16)

Employing the relation

∂GM
k (iEp)

∂kx
= GM

k (iEp)vx
kG

M
k (iEp), (17)

one finally obtains Eq. (2).
For completeness, we mention that it has been shown that

Eq. (2) needs to be modified for the calculation of OMS
from tight-binding models [27,28]. We do not discuss these
modifications here.

B. Exchange constants

To derive an expression for the exchange constant, we
consider the case in which the magnetization performs small
sinusoidal oscillations around the z direction as a function of
the x coordinate:

n̂(x) =





η sin(qx)
0
1





1
√

1 + η2 sin2(qx)
, (18)

where n̂(x) is a normalized vector that describes the magnetiza-
tion direction and η controls the amplitude of the oscillations.
As a result of these oscillations, the free-energy density
changes by the amount

δF = A
xx

〈[

∂n̂x

∂x

]2〉

=
1

2
η2q2

A
xx, (19)

where A xx is an exchange constant and where we neglected
higher orders in η. In the presence of SOI, the free-energy
change may depend on whether the magnetization oscillates
in the xz plane or in the yz plane. When the magnetization
oscillates in the yz plane, i.e., when

n̂(x) =





0
η sin(qx)

1





1
√

1 + η2 sin2(qx)
, (20)

the corresponding free-energy change is described by

δF = A
xy

〈[

∂n̂y

∂x

]2〉

=
1

2
η2q2

A
xy, (21)

with the exchange constant A
xy . A

xy may differ from A
xx

in the presence of SOI. In the following, we use thermal
quantum field theory in order to obtain expressions for the
free-energy change δF that arises from spatial oscillations of
the magnetization direction as given by Eq. (18). We will then
use Eq. (19) to obtain A xx . To simplify the notation, we will
focus on the component A xx . The generalization to the other
exchange constants, such as A xy , is obvious.

We consider the Hamiltonian of a collinear ferromagnet
with magnetization pointing in the z direction, given by

H (r) = −
h̄2

2me


 + V (r) + µBσ z�xc(r)

+
1

2ec2
µBσ · [∇V (r) × v]. (22)

The kinetic energy is described by the first term. The second
term is a scalar potential. The third term describes the exchange
interaction, where µB is the Bohr magneton, σ = (σ x,σ y,σ z)T

is the vector of Pauli spin matrices, and �xc(r) is the exchange
field. The last term is the spin-orbit interaction. When the
magnetization direction is not collinear but spatially oscil-
lating according to Eq. (18), the corresponding Hamiltonian
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is H ′ = H + δH (1) + δH (2), with

δH (1) = µBσ x�xc(r)η sin(qx) = T yη sin(qx) (23)

and

δH (2) = − 1
2µBσ z�xc(r)η2 sin2(qx)

= − 1
4µBσ z�xc(r)η2[1 − cos(2qx)], (24)

where T = −µBσ × êz�xc is the torque operator and T y is
its y component. According to Eq. (19), we need to find the
modification of the free energy that is quadratic in η. Therefore,
we need to perform second-order perturbation theory with
δH (1) and first-order perturbation theory with δH (2).

The perturbation δH (1) can be written in second quantiza-
tion in the form

δH (1) =
η

2i

∑

knm

{〈uk+n|T
y |uk−m〉c

†
k+nck−m

−〈uk−n|T
y |uk+m〉c

†
k−nck+m}. (25)

In second-order perturbation theory with respect to δH (1), the
free energy is modified by the amount

δF =
η2

4βh̄2

∫

ddk

(2π )d

∑

p

Tr
[

GM
k+

(iEp)T yGM
k−

(iEp)T y
]

.

(26)

The zeroth-order term in the Taylor expansion of δF with
respect to q cancels out with the contribution from the
piece − 1

4µBσ z�xc(r)η2 from δH (2) only when SOI is not
included. This is an interesting difference from the case of
the orbital magnetic susceptibility discussed below Eq. (14),
where the corresponding cancellation happens always. This
difference is due to the fact that the magnetic anisotropy
energy gives rise to a contribution to δF that in leading order
is proportional to η2 at the zeroth order in q. The oscillating
piece 1

4µBσ z�xc(r)η2 cos(2qx) from δH (2) averages out
in first-order perturbation theory. To obtain the exchange
constant A

xx , we need the q-quadratic term from the Taylor
expansion of δF , which is given by

δF = −
η2q2

8βh̄2

∫

ddk

(2π )d

∑

p

Tr

[

∂GM
k+

(iEp)

∂kx
T y

∂GM
k−

(iEp)

∂kx
T y

]

.

(27)

Using Eqs. (17) and (19), we find the following expression
for the exchange constant:

A
xx =

−1

4βh̄2

∑

p

∫

ddk

(2π )d
Tr

×
[

GM
k (iEp)T yGM

k (iEp)vx
kG

M
k (iEp)T yGM

k (iEp)vx
k

]

,

(28)

which strongly resembles the Fukuyama formula for OMS,
Eq. (2). Apart from the prefactor, Eq. (28) differs from Eq. (2)
by the replacement of the velocity operator v

y

k by the torque
operator T y .

The summation over Matsubara points can be expressed
in terms of an energy integration along the real energy axis

yielding

A
xx =

1

4πh̄2
Im

∫

dEf (E)

∫

ddk

(2π )d
Tr

×
[

GR
k (E)T yGR

k (E)vx
kG

R
k (E)T yGR

k (E)vx
k

]

. (29)

The unit of the exchange constant as given by Eq. (28) or
Eq. (29) is energy times length when d = 1, energy when
d = 2, and energy per length when d = 3. Consequently, the
unit of the free-energy density as given by Eq. (19) is energy per
length when d = 1, energy per area when d = 2, and energy
per volume when d = 3.

We have mentioned in the previous section that the
Fukuyama formula for OMS needs to be modified for tight-
binding models [27,28]. We expect similar modifications to
be necessary when exchange constants are computed from
tight-binding models, but we leave the discussion of these
modifications for future work.

III. CURVATURES, QUANTUM METRICS, MOMENTS,

AND POLARIZATIONS

A. Orbital magnetic susceptibility

As discussed by Ogata et al. in [12], one can express the
velocity operators and Green’s functions in Eq. (2) in the
representation of Bloch eigenfunctions such that

χ zz =
µ0e

2h̄2

2β

∑

nn′

l l′

∫

ddk

(2π )d
[

vx
knn′v

y

kn′lv
x
kll′v

y

kl′n

]

×
∑

p

1

iEp − Ekn

1

iEp − Ekn′

1

iEp − Ekl

1

iEp − Ekl′
,

(30)

where vknn′ = 〈ukn|vk|ukn′〉 denotes the matrix elements of the
velocity operator, Ekn is the energy of band n at k-point k, and
|ukn〉 is the corresponding eigenstate of Hk, i.e., Hk|ukn〉 =

Ekn|ukn〉. The summations over Matsubara points can be
carried out with the help of partial fraction decomposition
and with the identity

1

β

∑

p

1

[iEp − Ekn]m
=

1

(m − 1)!
f

(m−1)
kn , (31)

where f
(m−1)
kn is the (m − 1)th derivative of the Fermi function.

For example, when n = n′ = l = l′ in Eq. (30) one uses
Eq. (31) with m = 4, which leads to a contribution with
the third derivative of the Fermi function. To rewrite high
derivatives of the Fermi function in terms of lower derivatives,
one employs integration by parts and the relation

vknf
(m+1)
kn =

1

h̄

∂f
(m)
kn

∂k
, (32)

where we defined vkn = vknn. Thereby, one can achieve that
only the first derivative of the Fermi function occurs. The
resulting expression for the orbital magnetic susceptibility can
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be written as

χ zz = µ0
e2

h̄2

∫

ddk

(2π )d

∑

n

[

1

12
f ′

kn

(

αxx
knα

yy

kn − α
xy

knα
yx

kn

)

− f ′
knm

z
knm

z
kn −

h̄2

4me

fkn

(

gxx
kn + g

yy

kn

)

+
3

2
fkn�

z
knm

z
kn

+
1

4
fkn

(

gxx
knα

yy

kn + g
yy

knα
xx
kn − 2g

xy

knα
yx

kn

)

+
h̄2

2
f ′

knv
x
kn

∂〈ukn|

∂ky

[

vx
k + vx

kn

]∂|ukn〉

∂ky

+
h̄2

2
f ′

knv
y

kn

∂〈ukn|

∂kx

[

v
y

k + v
y

kn

]∂|ukn〉

∂kx

−
h̄2

2
f ′

knv
x
kn

∂〈ukn|

∂ky

[

v
y

k + v
y

kn

]∂|ukn〉

∂kx

−
h̄2

2
f ′

knv
y

kn

∂〈ukn|

∂kx

[

vx
k + vx

kn

]∂|ukn〉

∂ky

− 2h̄2fkn

∑

m�=n

Mz
kmn[Mz

kmn]∗

Ekn − Ekm

]

, (33)

where

α
ij

kn =
∂2Ekn

∂ki∂kj
(34)

is the ij element of the inverse effective-mass tensor,

mz
kn = −Im

[

∂〈ukn|

∂kx
[Ekn − H ]

∂|ukn〉

∂ky

]

(35)

is the z component of the orbital moment of the wave packet
associated with band n at k-point k [29,30],

g
ij

kn = Re

[

∂〈ukn|

∂ki
[1 − |ukn〉 〈ukn|]

∂|ukn〉

∂kj

]

(36)

is the ij element of the k-space quantum metrical tensor
[14,31,32], me is the electron mass,

�z
kn = −2 Im

[

∂〈ukn|

∂kx

∂|ukn〉

∂ky

]

(37)

is the k-space Berry curvature, and

Mkmn =
1

2





∑

n′ �=n

vkmn′ × Akn′n + vkn × Akmn



 (38)

are interband matrix elements of the magnetic dipole moment
and of the position operator [13], where

Akmn = i〈ukm|
∂|ukn〉

∂k
= ih̄

〈ukm|v|ukn〉

Ekn − Ekm

(39)

is the interband Berry connection.
A detailed discussion of all terms in Eq. (33) has been

given by Gao et al. in Ref. [13]. In the semiclassical derivation
of Gao et al., the terms in lines 4, 5, 6, and 7 in Eq. (33)
are explained by the k-space polarization energy and are
related to the quadrupole moment of the velocity operator
with respect to wave packets [13]. However, the semiclassical
derivation yields a different prefactor for these polarization
terms. Already Ogata et al. pointed out in Ref. [12] that
the expression given by Gao et al. in Ref. [13] differs from
Eq. (2). However, Ogata et al. compared the semiclassical
expression to the Fukuyama formula only in the special case
of space-inversion symmetric systems when time-reversal

symmetry is not broken. We find that Eq. (2) can generally be
written in the form of Eq. (33), i.e., Eq. (33) yields the correct
orbital magnetic susceptibility even in the time-reversal
broken case and in systems lacking space inversion symmetry.

Only the last line in Eq. (33) involves interband couplings
explicitly, while the first eight lines in Eq. (33) are formulated
in terms of single-band properties. The Berry curvature and the
quantum metric describe the geometrical properties of a single
band. In this sense, the last term in line 2 and line 3 in Eq. (33)
constitute the geometrical contribution to the orbital magnetic
susceptibility [13]. In Sec. III B we will identify analogous
geometrical contributions to the exchange constants.

B. Exchange constants

As discussed in Sec. III A, the Fukuyama formula for
the orbital magnetic susceptibility, Eq. (2), can be expressed
in terms of geometrical properties such as the k-space
Berry curvature and the quantum metric, and several other
single-band properties, such as the orbital magnetic moment
and the k-space polarization. The expression for the exchange
constants, Eq. (28), has the same structure as Eq. (2) and can
be obtained by replacing two velocity operators in Eq. (2) by
torque operators. This formal similarity suggests that Eq. (28)
can be expressed in terms of Berry curvatures and quantum
metrics in mixed phase space. For this purpose, we define the
mixed Berry curvature [5]

B
ij

kn = −2 Im

〈

∂ukn

∂n̂i

∣

∣

∣

∣

∂ukn

∂kj

〉

, (40)

where k-derivatives are mixed with n̂-derivatives. Similarly,
we define the mixed quantum metric

G
ij

kn = Re

[

∂〈ukn|

∂n̂i
[1 − |ukn〉 〈ukn|]

∂|ukn〉

∂kj

]

. (41)

Additionally, we define the quantum metric in magnetization
space

g̃
ij

kn = Re

[

∂〈ukn|

∂n̂i
[1 − |ukn〉〈ukn|]

∂|ukn〉

∂n̂j

]

. (42)

The twist-torque moment of wave packets is described by [4]

A
ij

kn = −Im

〈

∂ukn

∂n̂i

∣

∣

∣

∣

[Ekn − Hk]

∣

∣

∣

∣

∂ukn

∂kj

〉

, (43)

and

Ā
j

kmn = i〈ukm|
∂|ukn〉

∂n̂j
(44)

is the interband Berry connection in magnetization space. The
mixed phase-space analog of the inverse effective-mass tensor
is given by

ᾱ
ij

kn =
∂2Ekn

∂ki∂n̂j
. (45)

In Appendix A, we explain how the derivatives with respect
to magnetization direction are related to matrix elements of
the torque operator.
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In terms of the mixed phase-space quantities Eqs. (40)–(45),
the exchange constant can be written as

A
xx =

∫

ddk

(2π )d

∑

n

[

1

24

(

f ′′
knT

y

knT
y

knα
xx
kn + f ′

knᾱ
xx
kn ᾱxx

kn

)

+
1

2
f ′

knA
xx
knA

xx
kn +

1

3
fkng̃

xx
kn

h̄2

me

−
5

6
fknA

xx
knB

xx
kn

−
1

6
fknα

xx
kn g̃xx

kn +
1

6
fknᾱ

xx
knG

xx
kn + A

xx
pol + A

xx
inter

]

,

(46)

with

A
xx

pol =

∫

ddk

(2π )d

∑

n

×

[

−
1

6
f ′

knT
y

kn

〈

∂ukn

∂kx

∣

∣

∣

∣

[

T
y
+ 2T y

kn

]

∣

∣

∣

∣

∂ukn

∂kx

〉

−
1

6
h̄2f ′

knv
x
kn

〈

∂ukn

∂n̂x

∣

∣

∣

∣

[

vx
k + vx

kn

]

∣

∣

∣

∣

∂ukn

∂n̂x

〉

+
1

3
h̄f ′

knT
y

kn

〈

∂ukn

∂n̂x

∣

∣

∣

∣

[

2vx
k + vx

kn

]

∣

∣

∣

∣

∂ukn

∂kx

〉]

, (47)

and

A
xx

inter =

∫

ddk

(2π )d

∑

n





h̄2

3
fknv

x
knv

x
kn

∑

m�=n

Āx
kmn

[

Āx
kmn

]∗

Ekn − Ekm

−
2

3
h̄fknv

x
knT

y

kn

∑

m�=n

Āx
kmn

[

Ax
kmn

]∗

Ekn − Ekm

−
h̄

3
fkn

∑

m�=n

∑

q �=n

[

vx
kmqĀ

x
kqn

]∗∑

r �=n T
y

kmrA
x
krn

Ekn − Ekm

+
2

3
h̄2fkn

∑

m�=n

∑

q �=n

[

vx
kmqĀ

x
kqn

]∗∑

r �=n vx
kmrĀ

x
krn

Ekn − Ekm

−
1

3
h̄fknv

x
kn

∑

m�=n

[

Āx
kmn

]∗∑

r �=n T
y

kmrA
x
krn

Ekn − Ekm

−
2

3
h̄fknT

y

kn

∑

m�=n

[

Ax
kmn

]∗∑

r �=n vx
kmrĀ

x
krn

Ekn − Ekm

+ fknT
y

kn

∑

m�=n

[

Ax
kmn

]∗∑

r �=n T
y

kmrA
x
krn

Ekn − Ekm



, (48)

where we defined T
y

knn′ = 〈ukn|T
y
|ukn′〉 and T

y

kn = T
y

knn.
Equation (46) differs substantially in structure from

Eq. (33), while the corresponding Fukuyama-type expres-
sions, Eqs. (2) and (28), are very similar structurally. The
structural differences between Eqs. (46) and (33) arise be-
cause there is no integration over the magnetization direc-
tion, only a Brillouin zone integration, and therefore the

identity

T knf
(m+1)
kn = n̂ ×

∂f
(m)
kn

∂ n̂
(49)

cannot be combined with integration by parts in order to
rewrite high derivatives of the Fermi function in terms of
lower derivatives of the Fermi function while Eq. (32) can
be used for this purpose. For example, the first line in Eq. (46)
is related formally to the Landau-Peierls susceptibility in the
first line of Eq. (33): In the case of the orbital magnetic
susceptibility, the torque operators in the first line of Eq. (46)
turn into velocity operators and one can use integration by parts
such that

∫

ddk

(2π )d
f ′′

knv
y

knv
y

knα
xx
kn

=

∫

ddk

(2π )d
1

h̄

∂f ′
kn

∂ky
v

y

knα
xx
kn

= −

∫

ddk

(2π )d
1

h̄
f ′

kn

∂

∂ky

[

v
y

knα
xx
kn

]

= −

∫

ddk

(2π )d
1

h̄
f ′

kn

[

α
yy

knα
xx
kn + v

y

kn

∂

∂ky
αxx

kn

]

, (50)

which contains the term f ′
knα

yy

knα
xx
kn found also in the first line

of Eq. (33).
Line 2 and the first two terms in line 3 in Eq. (46) correspond

to lines 2 and 3 in Eq. (33), where the twist torque moment
Axx

kn replaces the orbital moment mz
kn, the k-space quantum

metric g
yy

kn is replaced by the magnetization-space quantum
metric g̃xx

kn , the mixed Berry curvature replaces the k-space
Berry curvature, and the off-diagonal elements of the inverse
effective mass, α

yx

kn , and of the k-space quantum metric, g
xy

kn,
are replaced by their mixed phase-space counterparts.

The contribution A
xx

pol defined in Eq. (47) corresponds to
lines 4, 5, 6, and 7 in Eq. (33), which describe the k-space
polarization energy. The contribution A

xx
inter defined in Eq. (48)

corresponds to the last line in Eq. (33) and is the only term
that contains interband couplings explicitly.

Several terms in Eq. (46) are zero when SOI is not included
in the Hamiltonian: The mixed phase-space analog of the
inverse effective mass, ᾱ

ij

kn, is zero without SOI, because the
band energy does not depend on the magnetization direction
when SOI is absent. Additionally, T y

kn = 0, Aij

kn = 0, Bij

kn = 0,

and G
ij

kn = 0 in the absence of SOI. Thus, when SOI is absent,
the exchange constants are given by the considerably simpler
expression

A
xx =

∫

ddk

(2π )d

∑

n

[

1

3
fkng̃

xx
kn

h̄2

me

−
1

6
fknα

xx
kn g̃xx

kn

−
h̄2

6
f ′

knv
x
kn

〈

∂ukn

∂n̂x

∣

∣

∣

∣

[vx
k + vx

kn]

∣

∣

∣

∣

∂ukn

∂n̂x

〉

+
h̄2

3
fknv

x
knv

x
kn

∑

m�=n

Āx
kmn

[

Āx
kmn

]∗

Ekn − Ekm
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−
h̄

3
fkn

∑

m�=n

∑

q �=n

[

vx
kmqĀ

x
kqn

]∗∑

r �=n T
y

kmrA
x
krn

Ekn − Ekm

+
2

3
h̄2fkn

∑

m�=n

∑

q �=n

[

vx
kmqĀ

x
kqn

]∗∑

r �=n vx
kmrĀ

x
krn

Ekn − Ekm

−
1

3
h̄fknv

x
kn

∑

m�=n

[

Āx
kmn

]∗∑

r �=n T
y

kmrA
x
krn

Ekn − Ekm



. (51)

In Appendix B, we discuss how to evaluate Eq. (51) analyti-
cally for simple model systems.

The last term in the second line and the first two terms in
the third line in Eq. (46) are the geometrical contribution to
the exchange constants. It consists of three terms:

A
xx

geo1 = −
5

6

∫

ddk

(2π )d

∑

n

fknA
xx
knB

xx
kn, (52)

A
xx

geo2 = −
1

6

∫

ddk

(2π )d

∑

n

fknα
xx
kn g̃xx

kn, (53)

and

A
xx

geo3 =
1

6

∫

ddk

(2π )d

∑

n

fknᾱ
xx
knG

xx
kn . (54)

Bxx
kn and Gxx

kn describe geometrical properties of the bands
in mixed phase space. When SOI is not included in the
Hamiltonian, A

xx
geo1 and A

xx
geo3 are zero. A

xx
geo2 is nonzero even

in the absence of SOI. It involves g̃xx
kn , which describes the

geometrical properties of the bands in real space.
According to Eq. (47), A

xx
pol contains only terms with f ′

kn.
The derivative of the Fermi function becomes large close to
the Fermi energy. In particular, at zero temperature we have
f ′

kn = −δ(EF − Ekn). Therefore, only states close to the Fermi
level contribute to A

xx
pol , i.e., A

xx
pol is a Fermi surface term. In

contrast, A
xx

inter [Eq. (48)] contains only terms with fkn, i.e.,
all states below the Fermi energy contribute to A

xx
inter. Hence,

A
xx

inter is a Fermi sea term. Equation (46) contains additional
Fermi surface and Fermi sea terms. The exchange constant
in magnetic band insulators arises from the Fermi sea terms,
since the Fermi surface terms are zero in insulators.

IV. GAUGE-FIELD APPROACH

The appearance of gauge fields and their application in
spintronics has been discussed in detail in the review Ref. [9].
They can occur in real space, momentum space, and in time.
Here, we are interested in the Berry gauge field associated
with electron spins that adiabatically follow noncollinear
magnetic textures. This gauge field mimics the magnetic
vector potential known from electrodynamics. The curl of this
effective magnetic vector potential has similar consequences
to a real magnetic field. In particular, it deflects electrons by
an effective Lorentz force, which leads to the topological Hall
effect [8]. The curl of the effective magnetic vector potential is
nonzero when the scalar spin chirality of the magnetic texture
is nonzero, for example in skyrmions. For the discussion of
the exchange constants, it is not necessary to consider systems

with nonzero scalar spin chirality. But even when the curl
of the effective magnetic vector potential is zero it does
have consequences, in particular it affects the energy of the
eigenstates, as we will see below.

In the case of the topological Hall effect, the gauge-field
approach has been developed for systems without SOI [8].
In the general case, it is difficult to apply the gauge-field
approach to magnetic systems with SOI. However, under
certain conditions the exchange constants can be obtained
from a gauge-field approach even in the presence of SOI.
We demonstrate this in the following. We will show that
the exchange constants calculated based on the gauge-field
approach agree with those given by Eq. (28). This will prove
the accuracy of Eq. (28).

We consider the Rashba model with an additional exchange
splitting (see Ref. [33] for a recent review on the Rashba
model),

H =
−h̄2

2me


 − iα(∇ × êz) · σ +

V

2
σ · n̂c(r), (55)

where the first, second, and third terms on the right-hand side
describe the kinetic energy, the Rashba spin-orbit coupling,
and the exchange interaction, respectively. We focus on the
case of a flat cycloidal spin-spiral, where the magnetization
direction n̂c(r) is given by

n̂c(r) =





sin(qx)
0

cos(qx)



. (56)

The exchange interaction describing the noncollinear spin-
spiral in Eq. (55) can be transformed into an effective exchange
interaction of a collinear magnet with the help of the unitary
transformation

U (x) =

(

cos
(

qx

2

)

− sin
(

qx

2

)

sin
(

qx

2

)

cos
(

qx

2

)

)

(57)

such that [8]

U †(x)

V

2
σ · n̂c(r)U (x) =


V

2
σz. (58)

The kinetic energy in Eq. (55) transforms under this unitary
transformation as follows [8]:

−
h̄2

2me

U †
U

= −
h̄2

2me

U † ∂

∂ r
·

(

U
∂

∂ r
+

∂U

∂ r

)

= −
h̄2

2me

(


 + 2U † ∂U

∂x

∂

∂x
+ U † ∂

2U

∂x2

)

. (59)

The derivatives of U with respect to the x coordinate are

∂U (x)

∂x
=

q

2

(

− sin
(

qx

2

)

− cos
(

qx

2

)

cos
(

qx

2

)

− sin
(

qx

2

)

)

(60)

and

∂2U (x)

∂x2
= −

q2

4
U (x) (61)
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and we have

[U (x)]†
∂U (x)

∂x
=

q

2

(

0 −1
1 0

)

=
q

2i
σy (62)

such that the kinetic energy transforms as

−
h̄2

2me

U †
U = −
h̄2

2me

(


 − iqσy

∂

∂x
−

q2

4

)

. (63)

Next, we need to find out how the Rashba SOI

1

i
ασ · (∇ × êz) =

1

i
α

[

σx

∂

∂y
− σy

∂

∂x

]

(64)

transforms under U . We have

[U (x)]†σy

∂U (x)

∂x
= −i

q

2
(65)

and

[U (x)]†σyU (x) = σy (66)

and thus

−[U (x)]†
[

α

i
σy

∂

∂x

]

U (x)

= −[U (x)]†[ασy]U (x)
1

i

∂

∂x

−[U (x)]†
[

α

i
σy

]

∂U (x)

∂x

= −ασy

1

i

∂

∂x
+

αq

2
. (67)

However,

[U (x)]†σxU (x)

=

(

2 cos2
(

qx

2

)

− 1 −2 cos
(

qx

2

)

sin
(

qx

2

)

−2 cos
(

qx

2 ) sin
(

qx

2

)

−2 cos2
(

qx

2

)

+ 1

)

(68)

depends on the x coordinate, and consequently the application
of the U transformation to Eq. (55) transforms the x depen-
dence of the exchange interaction into an x dependence of
SOI, and no simplification is achieved by this transformation.

Therefore, we consider now the one-dimensional version
of the Rashba model with an additional exchange splitting,

H =
−h̄2

2me

∂2

∂x2
+ iασy

∂

∂x
+


V

2
σ · n̂c(r). (69)

The one-dimensional Rashba model can be used to describe
spin-split bands in one-dimensional atomic chains on surfaces
[34]. Application of the U transformation to Eq. (69) yields

H̃ = [U (x)]†HU (x) = −
h̄2

2me

[

∂2

∂x2
− iqσy

∂

∂x
−

q2

4

]

+

V

2
σz − ασy

1

i

∂

∂x
+

αq

2
(70)

and the corresponding crystal-field representation of the
Hamiltonian is given by

H̃kx
=

h̄2

2me

[

k2
x − qkxσy +

q2

4

]

+

V

2
σz − αkxσy +

αq

2
. (71)

Since the U transformation preserves the eigenvalues, the
Hamiltonian H̃kx

has the same spectrum as Eq. (69). However,
H̃kx

is position-independent and thus it is straightforward to
determine its eigenvalues, while the original Hamiltonian in
Eq. (69) is more difficult to deal with due to the position
dependence of the exchange term for the cycloidal spin-spiral.

The reason why the U transformation can be used to
simplify Eq. (69) into H̃kx

lies in the spin-rotation symmetry of
Eq. (69): The Hamiltonian is invariant under the simultaneous
rotation of the spin operator and the magnetization direction
n̂c around the y axis. In contrast, the Hamiltonian of the
two-dimensional Rashba model, Eq. (55), does not exhibit
this symmetry when α �= 0.

The Hamiltonian Eq. (70) can be rewritten in the form

H =
1

2m
(px + eAeff)2 −

mα2

2h̄2
, (72)

where px = −ih̄∂/∂x is the x component of the momentum
operator and

Aeff = −
m

eh̄

(

α +
h̄2

2m
q

)

σy (73)

can be considered as an effective magnetic vector potential,
which is why we refer to this method as the gauge-field
approach.

The free-energy density Fq of the one-dimensional Rashba
model with exchange splitting, Eq. (69), can be obtained from

Fq = −
1

β

∫

dkx

2π

∑

n

ln[1 + e−β(Ekx ,q,n−µ)], (74)

where Ekx ,q,n denotes the nth eigenvalue of H̃kx
at the k-point

kx and spin-spiral wave number q. Equating Fq and the
phenomenological expression for the free energy

Fq = F0 + Dyxq + A
xxq2 (75)

allows us to determine the DMI coefficient and the exchange
parameter as follows:

Dyx =
Fq − F−q

2q
(76)

and

A
xx =

Fq + F−q − 2F0

2q2
. (77)

In Sec. V A we will compare the exchange constant A
xx

obtained from Eq. (77) to the one given by Eq. (28), and we
will find perfect agreement between these two rather different
approaches. Additionally, we will show in Sec. V A that the
DMI coefficient Dyx obtained from Eq. (76) is in perfect
agreement with the one given by the Berry-phase theory of
DMI [4–7], which in the one-dimensional case runs

Dyx =

∫

dkx

2π

∑

n

[

fknA
xx
kn+

1

β
ln[1 + e−β(Ekn−µ)]Bxx

kn

]

.

(78)

A. Two-dimensional electron gas without SOI

Due to Eq. (68), the U transformation does not lead to
simplifications in the case of the two-dimensional Rashba
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model Eq. (55) when α �= 0. However, in the case of α = 0
the U transformation leads to a simplification of Eq. (55):

H̃ = [U (x)]†HU (x)

= −
h̄2

2me

[


 − iqσy

∂

∂x
−

q2

4

]

+

V

2
σz, (79)

with corresponding crystal momentum representation

H̃k =
h̄2

2me

[

k2 − qkxσy +
q2

4

]

+

V

2
σz. (80)

Since H̃k is position-independent, its eigenvalues Ek,q,n

can be determined easily. The free-energy density is then
obtained from

Fq = −
1

β

∫

d2k

(2π )2

∑

n

ln[1 + e−β(Ek,q,n−µ)] (81)

and Eq. (77) can be used to determine the exchange
constant A

xx .

V. EXCHANGE CONSTANTS IN MODEL SYSTEMS

A. One-dimensional Rashba model

In the presence of SOI, both the exchange constant A
ij as

obtained from Eq. (28) and the DMI constant Dij as obtained
from Eq. (78) may depend on the magnetization direction n̂.
However, as we explained in the discussion below Eq. (69),
rotations in spin-space around the y axis are a symmetry
operation of the one-dimensional Rashba model. Since we
consider the special case of a cycloidal spin-spiral, Eq. (56),
which describes a magnetization that rotates around the y axis
as one moves along the spin-spiral, A

ij and Dij are constant
along this spin-spiral. This allows us to compare the values
of A

ij and Dij obtained for n̂ in the z direction to the values
obtained from the gauge-field approach in this particular case,
while in a general case a spin-spiral calculation will correspond
to an n̂-integration of n̂-dependent A

ij and Dij .
In Fig. 1 we show the exchange constant A

xx as well as
the DMI coefficient for the one-dimensional Rashba model,
Eq. (69), as a function of the Fermi energy. The parameters
used in the model are 
V = 1 eV and α = 2 eV Å and we
set the temperature in the Fermi functions to kBT = 25 meV.
Two approaches are compared: The dashed lines show the
results obtained from Eqs. (77) and (76) within the gauge-field
approach, where we used a small spin-spiral vector of q =

0.006 Å
−1

(we checked that making q smaller does not affect
the results). The solid line in Fig. 1(a) is obtained from the
Fukuyama-type expression Eq. (28) for the exchange constant.
The solid line in Fig. 1(b) is obtained from the Berry-phase
theory of DMI, Eq. (78). The results from the different
methods are in perfect agreement, which shows in particular
that Eq. (28) can be used for calculating exchange constants
even in the presence of SOI. The exchange constant becomes
negative when the Fermi energy is close to ±0.5 eV, i.e.,
close to the band minima [see Fig. 1(c)]. Negative exchange
constants imply that the ferromagnetic state is unstable and that
a spin-spiral state will form. With increasing Fermi energy, the
effect of Rashba SOI on the Fermi surface becomes smaller
and smaller. At very high Fermi energy, the Fermi surfaces
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FIG. 1. (a) Exchange constant A
xx and (b) DMI constant Dyx

in the one-dimensional Rashba model Eq. (69) as a function of
Fermi energy for the model parameters 
V = 1 eV and α = 2 eV Å.
Results obtained from the gauge-field approach (dashed lines) agree,
respectively, to the exchange constant from the Fukuyama-type
approach and to the DMI constant from the Berry-phase approach
(solid lines). (c) Band structure of the one-dimensional Rashba model.

with and without SOI differ very little. As a consequence, the
DMI is suppressed at high Fermi energy.

We have verified that the gauge-field approach, Eq. (76),
and the Berry-phase theory, Eq. (78), agree at all orders in SOI.
Previously, we have shown [7] that the Berry-phase theory
reduces to the ground-state spin current [35] at the first order
in SOI.

In Fig. 2 we show the exchange constants A
xx and A

xy

as a function of the Rashba parameter α when the Fermi
energy is set to zero and 
V = 1 eV. A

xx is the exchange
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FIG. 2. (a) Exchange constant A
xx and (b) A

xy in the one-
dimensional Rashba model Eq. (69) as a function of the Rashba
parameter α. The Fermi energy is set to zero and 
V = 1 eV. Solid
lines: complete exchange constants. The geometrical contributions
Ageo1 (dashed), Ageo2 (dotted), and Ageo3 (dashed-dotted) as defined
in Eqs. (52)–(54) are shown as well.

constant of a cycloidal spin-spiral and A
xy is that of a helical

spin-spiral. In the absence of SOI, rotations in spin-space
leave the spectrum of the Hamiltonian invariant and therefore
A

xx = A
xy . For α �= 0, A

xx and A
xy differ from each other

and the difference becomes large with increasing α. The
three geometrical contributions as defined in Eqs. (52)–(54)
are shown in Fig. 2 as well. The mixed Berry curvature
and the mixed quantum metric are zero without SOI and
therefore we expect that Ageo1 and Ageo3, which depend on
the mixed Berry curvature and the mixed quantum metric,
differ between cycloidal and helical spin-spirals, which is
indeed the case: While A

xx
geo1 increases strongly with α, A

xy

geo1

is zero, and while A
xx

geo3 is zero, A
xy

geo3 becomes negative

with increasing α. In contrast, A
xx

geo2 and A
xy

geo2 are very
similar, because they only involve the quantum metric in
real space as well as the inverse effective mass in k-space.
Generally, the geometrical contribution cannot be neglected
and is of the same order of magnitude as the total exchange
constant.

The expressions Eq. (46), Eq. (47), and Eq. (48) contain
both Fermi surface and Fermi sea terms. The exchange
constant does not vanish in band insulators due to the Fermi
sea terms and exhibits a plateau in the gap. To illustrate this, we
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FIG. 3. (a) Band energy of the one-dimensional Rashba model
Eq. (69) with model parameters α = 20 eV Å and 
V = 1 eV. (b)
The corresponding exchange constant exhibits a plateau between
−0.3 and 0.3 eV due to the gap of the band structure in (a).

show in Fig. 3 the exchange constant of the one-dimensional
Rashba model with model parameters α = 20 eV Å and


V = 1 eV. In the kx integration, we use a cutoff of 2.63 Å
−1

.
This cutoff is necessary in order to obtain an insulating system
because there is no global gap in the band structure of the
one-dimensional Rashba model. However, when we restrict

the range of k points to the region −2.63 < kx < 2.63 Å
−1

, the
band structure appears gapped as shown in Fig. 3(a). As shown
in Fig. 3(b), the corresponding exchange constant exhibits a
plateau in the gap.

B. Rashba model in two dimensions

When the Rashba parameter α is zero, the exchange
constant of the two-dimensional Rashba model can be obtained
from the gauge-field approach as discussed in Sec. IV A.
We checked that the gauge-field approach and Eq. (28) yield
identical results in this case.

We now turn to the case with α > 0, where we use the
model parameters α = 2 eV Å and 
V = 1 eV. In Fig. 4 we
show the exchange constants A

xx and A
xy as obtained from

Eq. (28) as a function of the Fermi energy, as well as the
geometrical contributions Ageo1, Ageo2, and Ageo3 as defined
in Eqs. (52)–(54). We rediscover several properties that we
discussed already in the one-dimensional Rashba model: The
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FIG. 4. (a) Exchange constant A xx and (b) A xy in the two-
dimensional Rashba model Eq. (55) as a function of the Fermi energy.
The model parameters are α = 2 eV Å and 
V = 1 eV. Solid lines:
complete exchange constants. The geometrical contributions Ageo1

(dashed), Ageo2 (dotted), and Ageo3 (dashed-dotted) as defined in
Eqs. (52)–(54) are shown as well.

exchange constant of the cycloidal spin-spiral (A xx) differs
considerably from the exchange constant of the helical spin-
spiral (A xy) when SOI is large. The contribution Ageo2 does
not differ much between helical spin-spiral and cycloidal spin-
spiral, while Ageo1 and Ageo3 are very different between these
two cases.

VI. SUMMARY

We derive a formula that expresses the exchange constants
in terms of Green’s functions, velocity operators, and torque
operators of a collinear ferromagnet. Thus, it allows us to
access the exchange constants directly from the electronic
structure information without the need for spin-spiral calcu-
lations. We compare this formula to Fukuyama’s result for
orbital magnetic susceptibility, and we find strong formal
similarities between these two theories. We rewrite the Green’s
function expression for the exchange constant in terms of
Berry curvatures and quantum metrics in mixed phase space.
Thereby we identify several geometrical contributions to the
exchange constants that we find to be generally important
in free electron model systems. Our formalism can be used
even in the presence of spin-orbit interaction, where we find

sizable differences between the exchange constants of helical
and cycloidal spin spirals in the Rashba model.

APPENDIX A: FROM TORQUE-OPERATOR

EXPRESSIONS TO CURVATURES

AND GEOMETRICAL QUANTITIES

In this appendix, we discuss how to express matrix elements
of the torque operator in terms of derivatives with respect
to the magnetization direction. For this purpose, we use that
the Hamiltonian

H (r) = −
h̄2

2me


 + V (r) + µBσ · n̂�xc(r)

+
1

2ec2
µBσ · [∇V (r) × v] (A1)

is dependent on the magnetization direction n̂ through the
exchange interaction µBσ · n̂ �xc(r). The derivative of H with
respect to magnetization direction n̂ can be expressed in terms
of the torque operator:

n̂ ×
∂H

∂ n̂
= µBn̂ × σ �xc(r) = −µBσ × �xc(r) = T (r).

(A2)

Thus, when the magnetization points in the z direction, i.e.,
when n̂ = êz, the Cartesian components of T are given by

T x = −
∂H

∂n̂y
,

T y =
∂H

∂n̂x
. (A3)

Using

∂|ukn〉

∂kx
=
∑

m�=n

|ukm〉〈ukm|
∂H (k)
∂kx |ukn〉

Ekn − Ekm

+ iakn|ukn〉

= h̄
∑

m�=n

|ukm〉〈ukm|vx(k)|ukn〉

Ekn − Ekm

+ iakn|ukn〉

(A4)

and

∂|ukn〉

∂n̂x
=
∑

m�=n

|ukm〉〈ukm|
∂H (k)
∂n̂x |ukn〉

Ekn − Ekm

+ ibkn|ukn〉

=
∑

m�=n

|ukm〉〈ukm|T y |ukn〉

Ekn − Ekm

+ ibkn|ukn〉, (A5)

where the phases akn and bkn determine the gauge, H (k) =

e−ik·rHeik·r is the Hamiltonian in crystal momentum repre-
sentation, and ukn(r) = e−ik·rψkn(r) is the lattice periodic part
of the Bloch function ψkn(r), we can express the mixed Berry
curvature in terms of the torque operator and the velocity
operator as follows:

Bxx
kn = − 2 Im

〈

∂ukn

∂n̂x

∣

∣

∣

∣

∂ukn

∂kx

〉

= − 2h̄ Im
∑

m�=n

〈ψkn|T
y |ψkm〉〈ψkm|vx |ψkn〉

(Ekm − Ekn)2
.

(A6)
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Similarly, we obtain an expression for the mixed quantum
metric in terms of the torque operator and the velocity operator:

Gxx
kn = Re

[

∂〈ukn|

∂n̂x
[1 − |ukn〉〈ukn|]

∂|ukn〉

∂kx

]

= h̄ Re
∑

m�=n

〈ψkn|T
y |ψkm〉〈ψkm|vx |ψkn〉

(Ekm − Ekn)2
. (A7)

The quantum metric in magnetization space can be written as

g̃xx
kn = Re

[

∂〈ukn|

∂n̂x
[1 − |ukn〉〈ukn|]

∂|ukn〉

∂n̂x

]

= Re
∑

m�=n

〈ψkn|T
y |ψkm〉〈ψkm|T y |ψkn〉

(Ekm − Ekn)2
. (A8)

The twist-torque moment of wave packets is given by

Axx
kn = −Im

〈

∂ukn

∂n̂x

∣

∣

∣

∣

[Ekn − Hk]

∣

∣

∣

∣

∂ukn

∂kx

〉

= h̄ Im
∑

m�=n

〈ψkn|T
y |ψkm〉〈ψkm|vx |ψkn〉

(Ekm − Ekn)
. (A9)

The interband Berry connection in magnetization space can be
written as

Āx
kmn = i〈ukm|

∂|ukn〉

∂n̂x

= i
〈ukm|T y |ukn〉

Ekn − Ekm

. (A10)

The mixed phase-space analog of the inverse effective-mass
tensor can be expressed in terms of the torque operator as

ᾱxx
kn =

∂2Ekn

∂kx∂n̂x

= 2h̄ Re
∑

m�=n

〈ψkn|T
y |ψkm〉〈ψkm|vx |ψkn〉

(Ekn − Ekm)
. (A11)

APPENDIX B: ANALYTICAL EXPRESSIONS WHEN SOI IS

NOT INCLUDED

In the following, we derive analytical expressions for the
case when SOI is not included in the Hamiltonian. In such a
case, one can show that

T y =
i

2
[H,σ y]. (B1)

Inserting this identity into Eq. (A8), one obtains the result

g̃xx
kn =

1

4
. (B2)

Inserting this result into Eq. (53), we get

A
xx

geo2 = −
1

24

h̄2

me

N , (B3)

where

N =

∫

ddk

(2π )d

∑

n

fkn (B4)

is the electron density. In the case d = 2, we have

N =
mEF

πh̄2
(B5)

if both majority and minority bands are occupied. If only the
majority band is occupied, we have instead

N =
m

2πh̄2

[

EF +

V

2

]

. (B6)

A
xx

geo2 is the second term in Eq. (51). Similarly, the first term
in Eq. (51) evaluates to

∫

ddk

(2π )d

∑

n

1

3
fkng̃

xx
kn

h̄2

me

=
1

12

h̄2

me

N . (B7)

The third term in Eq. (51) can be written as

−
h̄2

6

∫

ddk

(2π )d

∑

n

f ′
knv

x
kn

〈

∂ukn

∂n̂x

∣

∣

∣

∣

[

vx
k + vx

kn

]

∣

∣

∣

∣

∂ukn

∂n̂x

〉

= −
h̄2

12

∫

ddk

(2π )d

∑

n

f ′
kn

[

vx
kn

]2
. (B8)

When d = 2, this becomes

h̄4

48πm2

∫

k3dk
∑

n

δ

(

EF −
h̄2k2

2m
−


V

2
skn

)

, (B9)

where skn = ±1 denotes the spin (+1 for minority spin). When
only the majority band is occupied, this is equal to

1

24π

[

EF +

V

2

]

, (B10)

and when both minority and majority bands are occupied, it is
equal to

1

12π
EF. (B11)

The interband Berry connection in magnetization space be-
comes

Āx
kmn = 1

2 〈ukn|σ
y |ukn〉. (B12)

Consequently, the fourth term in Eq. (51) can be written as

h̄2

3

∫

ddk

(2π )d

∑

n

fknv
x
knv

x
kn

∑

m�=n

Āx
kmn

[

Āx
kmn

]∗

Ekn − Ekm

=
h̄2

24
V

∫

ddk

(2π )d

∑

n

fknskn

h̄2k2

m2

= −
1

24π
EF, (B13)

where the last line holds only in the case d = 2 when both
majority and minority bands are occupied. When only the
majority band is occupied, we obtain in the case d = 2 for the
fourth term

−
1

96π

[

EF +

V

2

]

−
1

48π

EF


V

[

EF +

V

2

]

. (B14)
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The fifth term in Eq. (51) vanishes for the two-band model
systems considered in this work. For two-band models, the
sixth term in Eq. (51) is simply twice the fourth term. The
seventh term in Eq. (51) vanishes for the two-band model
systems studied in this work.

Summing up all terms, we obtain zero when both majority
and minority bands are occupied. When only the majority band

is occupied, we obtain

A
xx =

1

32π

[

EF +

V

2

]

−
3

48π

EF


V

[

EF +

V

2

]

(B15)

in the case d = 2.

[1] Q. Niu and L. Kleinman, Phys. Rev. Lett. 80, 2205 (1998).
[2] Q. Niu, X. Wang, L. Kleinman, W.-M. Liu, D. M. C. Nicholson,

and G. M. Stocks, Phys. Rev. Lett. 83, 207 (1999).
[3] Z. Qian and G. Vignale, Phys. Rev. Lett. 88, 056404 (2002).
[4] F. Freimuth, S. Blügel, and Y. Mokrousov, J. Phys. Condens.

Matter 26, 104202 (2014).
[5] F. Freimuth, R. Bamler, Y. Mokrousov, and A. Rosch, Phys.

Rev. B 88, 214409 (2013).
[6] F. Freimuth, S. Blügel, and Y. Mokrousov, J. Phys. Condens.

Matter 28, 316001 (2016).
[7] F. Freimuth, S. Blügel, and Y. Mokrousov, arXiv:1610.06541.
[8] P. Bruno, V. K. Dugaev, and M. Taillefumier, Phys. Rev. Lett.

93, 096806 (2004).
[9] T. Fujita, M. B. A. Jalil, S. G. Tan, and S. Murakami, J. Appl.

Phys. 110, 121301 (2011).
[10] R. Resta, J. Phys. Condens. Matter 22, 123201 (2010).
[11] H. Fukuyama, Prog. Theor. Phys. 45, 704 (1971).
[12] M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 84, 124708

(2015).
[13] Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. B 91, 214405 (2015).
[14] F. Piéchon, A. Raoux, J.-N. Fuchs, and G. Montambaux, Phys.

Rev. B 94, 134423 (2016).
[15] S. V. Halilov, H. Eschrig, A. Y. Perlov, and P. M. Oppeneer,

Phys. Rev. B 58, 293 (1998).
[16] P. Kurz, F. Förster, L. Nordström, G. Bihlmayer, and S. Blügel,

Phys. Rev. B 69, 024415 (2004).
[17] H. Kohno, Y. Hiraoka, M. Hatami, and G. E. W. Bauer, Phys.

Rev. B 94, 104417 (2016).
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