000830255 001__ 830255
000830255 005__ 20240712113059.0
000830255 0247_ $$2doi$$a10.1016/j.jpowsour.2017.01.133
000830255 0247_ $$2ISSN$$a0378-7753
000830255 0247_ $$2ISSN$$a1873-2755
000830255 0247_ $$2WOS$$aWOS:000397355500028
000830255 0247_ $$2altmetric$$aaltmetric:21833897
000830255 037__ $$aFZJ-2017-03828
000830255 082__ $$a620
000830255 1001_ $$0P:(DE-HGF)0$$aLewerenz, Meinert$$b0$$eCorresponding author
000830255 245__ $$aSystematic aging of commercial LiFePO4|Graphite cylindrical cells including a theory explaining rise of capacity during aging
000830255 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000830255 3367_ $$2DRIVER$$aarticle
000830255 3367_ $$2DataCite$$aOutput Types/Journal article
000830255 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1496057778_27628
000830255 3367_ $$2BibTeX$$aARTICLE
000830255 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830255 3367_ $$00$$2EndNote$$aJournal Article
000830255 520__ $$aThe contribution introduces a new theory explaining the capacity increase that is often observed in early stages of life of lithium-ion batteries. This reversible and SOC-depending capacity rise is explained by the passive electrode effect in this work. The theory assumes a slow, compensating flow of active lithium between the passive and the active part of the anode, where the passive part represents the geometric excess anode with respect to the cathode. The theory is validated using a systematic test of 50 cylindrical 8 Ah LiFePO4|Graphite battery cells analyzed during cyclic and calendaric aging. The cyclic aging has been performed symmetrically at 40 °C cell temperature, varying current rates and DODs. The calendar aging is executed at three temperatures and up to four SOCs. The aging is dominated by capacity fade while the increase of internal resistance is hardly influenced. Surprisingly shallow cycling between 45 and 55% SOC shows stronger aging than aging at higher DOD and tests at 4 C exhibit less aging than aging at lower C-rates. Aging mechanisms at 60 °C seem to deviate from those at 40 °C or lower.The data of this aging matrix is used for further destructive and non-destructive characterization in future contributions.
000830255 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000830255 588__ $$aDataset connected to CrossRef
000830255 7001_ $$0P:(DE-HGF)0$$aMünnix, Jens$$b1
000830255 7001_ $$0P:(DE-HGF)0$$aSchmalstieg, Johannes$$b2
000830255 7001_ $$0P:(DE-Juel1)166431$$aKäbitz, Stefan$$b3
000830255 7001_ $$0P:(DE-HGF)0$$aKnips, Marcus$$b4
000830255 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b5$$ufzj
000830255 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.01.133$$gVol. 345, p. 254 - 263$$p254 - 263$$tJournal of power sources$$v345$$x0378-7753$$y2017
000830255 8564_ $$uhttps://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.pdf$$yRestricted
000830255 8564_ $$uhttps://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.gif?subformat=icon$$xicon$$yRestricted
000830255 8564_ $$uhttps://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000830255 8564_ $$uhttps://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000830255 8564_ $$uhttps://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000830255 8564_ $$uhttps://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000830255 909CO $$ooai:juser.fz-juelich.de:830255$$pVDB
000830255 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b5$$kFZJ
000830255 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000830255 9141_ $$y2017
000830255 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000830255 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830255 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830255 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000830255 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000830255 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000830255 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830255 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000830255 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830255 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830255 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000830255 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000830255 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000830255 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000830255 980__ $$ajournal
000830255 980__ $$aVDB
000830255 980__ $$aI:(DE-Juel1)IEK-12-20141217
000830255 980__ $$aUNRESTRICTED
000830255 981__ $$aI:(DE-Juel1)IMD-4-20141217