001     830255
005     20240712113059.0
024 7 _ |a 10.1016/j.jpowsour.2017.01.133
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000397355500028
|2 WOS
024 7 _ |a altmetric:21833897
|2 altmetric
037 _ _ |a FZJ-2017-03828
082 _ _ |a 620
100 1 _ |a Lewerenz, Meinert
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Systematic aging of commercial LiFePO4|Graphite cylindrical cells including a theory explaining rise of capacity during aging
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1496057778_27628
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The contribution introduces a new theory explaining the capacity increase that is often observed in early stages of life of lithium-ion batteries. This reversible and SOC-depending capacity rise is explained by the passive electrode effect in this work. The theory assumes a slow, compensating flow of active lithium between the passive and the active part of the anode, where the passive part represents the geometric excess anode with respect to the cathode. The theory is validated using a systematic test of 50 cylindrical 8 Ah LiFePO4|Graphite battery cells analyzed during cyclic and calendaric aging. The cyclic aging has been performed symmetrically at 40 °C cell temperature, varying current rates and DODs. The calendar aging is executed at three temperatures and up to four SOCs. The aging is dominated by capacity fade while the increase of internal resistance is hardly influenced. Surprisingly shallow cycling between 45 and 55% SOC shows stronger aging than aging at higher DOD and tests at 4 C exhibit less aging than aging at lower C-rates. Aging mechanisms at 60 °C seem to deviate from those at 40 °C or lower.The data of this aging matrix is used for further destructive and non-destructive characterization in future contributions.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Münnix, Jens
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schmalstieg, Johannes
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Käbitz, Stefan
|0 P:(DE-Juel1)166431
|b 3
700 1 _ |a Knips, Marcus
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 5
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2017.01.133
|g Vol. 345, p. 254 - 263
|0 PERI:(DE-600)1491915-1
|p 254 - 263
|t Journal of power sources
|v 345
|y 2017
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830255/files/1-s2.0-S037877531730143X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:830255
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21