001     830260
005     20210129230448.0
024 7 _ |a 10.1063/1.4983559
|2 doi
024 7 _ |a 0021-8979
|2 ISSN
024 7 _ |a 0148-6349
|2 ISSN
024 7 _ |a 1089-7550
|2 ISSN
024 7 _ |a 2128/14571
|2 Handle
024 7 _ |a WOS:000404164200003
|2 WOS
024 7 _ |a altmetric:20801597
|2 altmetric
037 _ _ |a FZJ-2017-03833
082 _ _ |a 530
100 1 _ |a Iacopetti, S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The asymmetric band structure and electrical behavior of the GdScO 3 /GaN system
260 _ _ |a Melville, NY
|c 2017
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1496228918_6361
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a III–V nitrides are interesting materials for a very wide variety of electronic and optoelectronic devices. In this study, their interaction with GdScO3 (GSO), a ternary rare earth oxide, is investigated for MOS applications.We compare pulsed laser deposited amorphous and crystalline epitaxial GdScO3 in terms of their band alignment with the underlying GaN substrate and the resulting electrical characteristics of the MOS stack. The crystal structure of GdScO3 and GaN is investigated by means of x-ray diffraction, showing that crystalline oxide is growing epitaxially on GaN. X-ray photoelectron spectroscopy analysis shows a staggered band alignment with a GdScO3-GaN valence band offset of 3.6–3.7 eV, which is reflected in a very asymmetric current-voltage behaviour of the MOS capacitors: breakdown at positive bias, significantly earlier for the crystalline oxide (around 5MV/cm) compared to the amorphous oxide (around 8MV/cm), and no breakdown up to a field of 14 MV/cm at negative bias. Transmission electron microscopy images show a crystalline, two-atom thick interface layer between GaN and both crystalline and amorphous GdScO3, which is thought to be an electron barrier between GSO and GaN and a possible source of the staggered band alignment. The electrical behaviour can be exploited for asymmetric nano-electronic devices. Published by AIP Publishing.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shekhter, P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Winter, R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tromm, T. C. U.
|0 P:(DE-Juel1)165625
|b 3
700 1 _ |a Schubert, J.
|0 P:(DE-Juel1)128631
|b 4
700 1 _ |a Eizenberg, M.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1063/1.4983559
|g Vol. 121, no. 20, p. 205303 -
|0 PERI:(DE-600)1476463-5
|n 20
|p 205303 -
|t Journal of applied physics
|v 121
|y 2017
|x 1089-7550
856 4 _ |y Published on 2017-05-31. Available in OpenAccess from 2018-05-31.
|u https://juser.fz-juelich.de/record/830260/files/JAP-Sara-Pini-GSO-asymmetric%20bandstructure.pdf
856 4 _ |y Published on 2017-05-31. Available in OpenAccess from 2018-05-31.
|x icon
|u https://juser.fz-juelich.de/record/830260/files/JAP-Sara-Pini-GSO-asymmetric%20bandstructure.gif?subformat=icon
856 4 _ |y Published on 2017-05-31. Available in OpenAccess from 2018-05-31.
|x icon-1440
|u https://juser.fz-juelich.de/record/830260/files/JAP-Sara-Pini-GSO-asymmetric%20bandstructure.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-05-31. Available in OpenAccess from 2018-05-31.
|x icon-180
|u https://juser.fz-juelich.de/record/830260/files/JAP-Sara-Pini-GSO-asymmetric%20bandstructure.jpg?subformat=icon-180
856 4 _ |y Published on 2017-05-31. Available in OpenAccess from 2018-05-31.
|x icon-640
|u https://juser.fz-juelich.de/record/830260/files/JAP-Sara-Pini-GSO-asymmetric%20bandstructure.jpg?subformat=icon-640
856 4 _ |y Published on 2017-05-31. Available in OpenAccess from 2018-05-31.
|x pdfa
|u https://juser.fz-juelich.de/record/830260/files/JAP-Sara-Pini-GSO-asymmetric%20bandstructure.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:830260
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)165625
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128631
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21