000830337 001__ 830337
000830337 005__ 20210129230505.0
000830337 0247_ $$2Handle$$a2128/14694
000830337 037__ $$aFZJ-2017-03901
000830337 041__ $$aEnglish
000830337 1001_ $$0P:(DE-Juel1)169442$$aSchöffmann, Patrick$$b0$$eCorresponding author$$ufzj
000830337 245__ $$aPreparation and Characterisationof Thin SrCoO$_x$ Films$$f2016-04-01 - 2017-03-31
000830337 260__ $$c2017
000830337 300__ $$a89
000830337 3367_ $$2DataCite$$aOutput Types/Supervised Student Publication
000830337 3367_ $$02$$2EndNote$$aThesis
000830337 3367_ $$2BibTeX$$aMASTERSTHESIS
000830337 3367_ $$2DRIVER$$amasterThesis
000830337 3367_ $$0PUB:(DE-HGF)19$$2PUB:(DE-HGF)$$aMaster Thesis$$bmaster$$mmaster$$s1497945464_12127
000830337 3367_ $$2ORCID$$aSUPERVISED_STUDENT_PUBLICATION
000830337 502__ $$aTechnische Universität München, Masterarbeit, 2017$$bMS$$cTechnische Universität München$$d2017$$o2017-05-19
000830337 520__ $$aTransition metal oxides are an extremely interesting class of materials, exhibiting a wide range of properties, from ferromagnetism to antiferromagnetism, frominsulating to conducting, superconductivity, multiferroicity, and many more. One special system is strontium cobaltite (SrCoO$_{x}$). In its fully oxidized state SrCoO$_3$ it is a ferromagnetic, conducting perovskite. If, however, the oxygen content is changed slightly to SrCoO$_{2.5}$, the oxygen vacancies form channels, changing the crystalline structure to a brownmillerite, and the magnetic and conductive properties reverse to an antiferromagnetic insulator. These two crystal structures can be topotactically transformed into one another without destroying the crystallinity. This property makes SrCoO$_x$ suitable for a large variety of applications, e.g. as a cathode material and catalyst for redox reactions in fuel cells or magnetic switches via epitaxial strain. To take advantage of the unique possibilities of SrCoO$_x$ , particularly in the field of thin film devices, it is imperative to be able to grow Sr$_1$Co$_1$O$_x$ in the correct stoichiometry. The aim of this thesis is to find the correct deposition conditions for the growth of stoichiometric SrCoO$_x$ thin film samples via molecular beam epitaxy (MBE), like substrate temperature, cooling speed, pressure, oxygen power, and especially the Sr and Co deposition rates. Because the samples are prepared via MBE, which does not use a target with an already defined stoichiometry like sputter deposition or pulsed laser deposition, but rather the evaporation of elemental material, the stoichiometry of the samples depends on several factors. The individual growth rates for Sr and Co do not only depend on the amount of evaporated material, but also on the sticking coeficient of the material on the substrate. As the sticking coeficient is also temperature dependent, there is a large parameter space that needs to be investigated. Therefore, samples with varying Co/Sr deposition rate ratios at different deposition temperatures were produced. The stoichiometry was analysed by Rutherford backscattering spectroscopy (RBS). The crystallinity of the samples was studied by low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED) and X-ray diffraction (XRD). To investigate the surface topography, atomic force microscopy (AFM) was performed. X-ray reflectometry (XRR) was used to determine the global surface roughness and film thickness.
000830337 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x0
000830337 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000830337 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000830337 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x3
000830337 650_7 $$xMasterarbeit
000830337 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x0
000830337 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000830337 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0
000830337 8564_ $$uhttps://juser.fz-juelich.de/record/830337/files/Masters%20thesis%20Patrick%20Schoeffmann.pdf$$yOpenAccess
000830337 8564_ $$uhttps://juser.fz-juelich.de/record/830337/files/Masters%20thesis%20Patrick%20Schoeffmann.gif?subformat=icon$$xicon$$yOpenAccess
000830337 8564_ $$uhttps://juser.fz-juelich.de/record/830337/files/Masters%20thesis%20Patrick%20Schoeffmann.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000830337 8564_ $$uhttps://juser.fz-juelich.de/record/830337/files/Masters%20thesis%20Patrick%20Schoeffmann.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000830337 8564_ $$uhttps://juser.fz-juelich.de/record/830337/files/Masters%20thesis%20Patrick%20Schoeffmann.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000830337 8564_ $$uhttps://juser.fz-juelich.de/record/830337/files/Masters%20thesis%20Patrick%20Schoeffmann.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000830337 909CO $$ooai:juser.fz-juelich.de:830337$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$pVDB:MLZ$$popenaire
000830337 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169442$$aForschungszentrum Jülich$$b0$$kFZJ
000830337 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000830337 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000830337 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000830337 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x3
000830337 9141_ $$y2017
000830337 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000830337 920__ $$lyes
000830337 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000830337 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000830337 980__ $$amaster
000830337 980__ $$aVDB
000830337 980__ $$aUNRESTRICTED
000830337 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000830337 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000830337 9801_ $$aFullTexts