000830383 001__ 830383
000830383 005__ 20240619083538.0
000830383 0247_ $$2Handle$$a2128/14689
000830383 037__ $$aFZJ-2017-03936
000830383 041__ $$aEnglish
000830383 1001_ $$0P:(DE-Juel1)166572$$aNiether, Doreen$$b0$$eCorresponding author$$ufzj
000830383 1112_ $$a116th General Assembly of the  German Bunsen Society for Physical Chemistry$$cKaiserslautern$$d2017-05-25 - 2017-05-27$$gBunsentagung 2017$$wGermany
000830383 245__ $$aThermophoresis of cyclodextrins and cyclodextrin-drug-complexes
000830383 260__ $$c2017
000830383 3367_ $$033$$2EndNote$$aConference Paper
000830383 3367_ $$2BibTeX$$aINPROCEEDINGS
000830383 3367_ $$2DRIVER$$aconferenceObject
000830383 3367_ $$2ORCID$$aCONFERENCE_POSTER
000830383 3367_ $$2DataCite$$aOutput Types/Conference Poster
000830383 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1497938062_12124$$xInvited
000830383 520__ $$aThe behaviour of biomolecules in a temperature gradient, known as thermodiffusion, changes when a ligand binds. In recent years, this effect has been used to gain detailed information on binding dynamics, although the physicochemical processes are still unclear [1]. We focused on the question how the hydration layer affects thermodiffusion when it changes due to complex formation. As model system we used cyclodextrin complexes with acetylsalicylic acid (Aspirin). Cyclodextrins are cyclic oligosaccharides that show a strong tendency towards complex formation. For that reason they are interesting as drug delivery systems [2,3.] The thermodiffusion of different cyclodextrins [4] and their aspirin complexes was investigated in a temperature range from 10 to 50°C by infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS). Additionally, NMR measurements were performed at 25 and 60°C to obtain information about stability and structure of the complexes. We found that all cyclodextrins show a stronger diffusion towards the cold side when Aspirin binds. This behaviour suggests a weaker interaction with the surrounding water that could be explained by hydrogen bond formation inside the complex.[1] M. Jerabek-Willemsen, T. André, W. Wanner, H. Roth, S. Duhr, P. Baaske, and D. Breitsprecher, J. Mol. Struct. (2014).[2] E. Del Valle, Process Biochemistry 39, 1033 (2004).[3] J. Szejtli, Drug Invest. 2, 11 (1990).[4] K. Eguchi, D. Niether, S. Wiegand, and R. Kita, Eur.Phys. J. E 39, 16086 (2016).
000830383 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000830383 7001_ $$0P:(DE-HGF)0$$aKawaguchi, Tsubasa$$b1
000830383 7001_ $$0P:(DE-Juel1)169893$$aHovancova, Jana$$b2
000830383 7001_ $$0P:(DE-Juel1)169159$$aEguchi, Kazuja$$b3
000830383 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K.G.$$b4$$ufzj
000830383 7001_ $$0P:(DE-HGF)0$$aKita, Rio$$b5
000830383 7001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b6$$ufzj
000830383 8564_ $$uhttps://juser.fz-juelich.de/record/830383/files/Poster%20Cyclodextrins.pdf$$yOpenAccess
000830383 8564_ $$uhttps://juser.fz-juelich.de/record/830383/files/Poster%20Cyclodextrins.gif?subformat=icon$$xicon$$yOpenAccess
000830383 8564_ $$uhttps://juser.fz-juelich.de/record/830383/files/Poster%20Cyclodextrins.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000830383 8564_ $$uhttps://juser.fz-juelich.de/record/830383/files/Poster%20Cyclodextrins.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000830383 8564_ $$uhttps://juser.fz-juelich.de/record/830383/files/Poster%20Cyclodextrins.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000830383 8564_ $$uhttps://juser.fz-juelich.de/record/830383/files/Poster%20Cyclodextrins.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000830383 909CO $$ooai:juser.fz-juelich.de:830383$$pdriver$$pVDB$$popen_access$$popenaire
000830383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166572$$aForschungszentrum Jülich$$b0$$kFZJ
000830383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich$$b4$$kFZJ
000830383 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich$$b6$$kFZJ
000830383 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000830383 9141_ $$y2017
000830383 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000830383 920__ $$lyes
000830383 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x0
000830383 9801_ $$aFullTexts
000830383 980__ $$aposter
000830383 980__ $$aVDB
000830383 980__ $$aUNRESTRICTED
000830383 980__ $$aI:(DE-Juel1)ICS-3-20110106