001     830389
005     20220930130124.0
024 7 _ |a 10.1063/1.4983618
|2 doi
024 7 _ |a 2128/14594
|2 Handle
024 7 _ |a WOS:000402754200019
|2 WOS
037 _ _ |a FZJ-2017-03942
082 _ _ |a 620
100 1 _ |a Andrä, Michael
|0 P:(DE-Juel1)161427
|b 0
|e Corresponding author
245 _ _ |a Oxygen partial pressure dependence of surface space charge formation in donor-doped SrTiO 321
260 _ _ |a Melville, NY
|c 2017
|b AIP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1496726028_28739
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, we investigated the electronic surface structure of donor-doped strontium titanate. Homoepitaxial 0.5 wt. % donor-doped SrTiO3 thin films were analyzed by in situ near ambient pressure X-ray photoelectron spectroscopy at a temperature of 770 K and oxygen pressures up to 5 mbar. Upon exposure to an oxygen atmosphere at elevated temperatures, we observed a rigid binding energy shift of up to 0.6 eV towards lower binding energies with respect to vacuum conditions for all SrTiO3 core level peaks and the valence band maximum with increasing oxygen pressure. The rigid shift is attributed to a relative shift of the Fermi energy towards the valence band concomitant with a negative charge accumulation at the surface, resulting in a compensating electron depletion layer in the near surface region. Charge trapping effects solely based on carbon contaminants are unlikely due to their irreversible desorption under the given experimental conditions. In addition, simple reoxygenation of oxygen vacancies can be ruled out as the high niobium dopant concentration dominates the electronic properties of the material. Instead, the negative surface charge may be provided by the formation of cation vacancies or the formation of charged oxygen adsorbates at the surface. Our results clearly indicate a pO2-dependent surface space charge formation in donor-doped SrTiO3 in oxidizing conditions.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dvořák, Filip
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vorokhta, Mykhailo
|0 0000-0001-8382-7027
|b 2
700 1 _ |a Nemšák, Slavomír
|0 P:(DE-Juel1)164137
|b 3
700 1 _ |a Matolín, Vladimír
|0 0000-0002-3394-4142
|b 4
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 5
700 1 _ |a Dittmann, Regina
|0 P:(DE-Juel1)130620
|b 6
700 1 _ |a Gunkel, Felix
|0 P:(DE-Juel1)130677
|b 7
|u fzj
700 1 _ |a Müller, David
|0 P:(DE-Juel1)166093
|b 8
700 1 _ |a Waser, R.
|0 P:(DE-Juel1)131022
|b 9
773 _ _ |a 10.1063/1.4983618
|g Vol. 5, no. 5, p. 056106 -
|0 PERI:(DE-600)2722985-3
|n 5
|p 056106 -
|t APL materials
|v 5
|y 2017
|x 2166-532X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/830389/files/1.4983618.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/830389/files/1.4983618.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/830389/files/1.4983618.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/830389/files/1.4983618.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/830389/files/1.4983618.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/830389/files/1.4983618.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:830389
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130948
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130620
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166093
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131022
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APL MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21