000830495 001__ 830495
000830495 005__ 20250129094253.0
000830495 0247_ $$2doi$$a10.1038/s41598-017-02121-4
000830495 0247_ $$2Handle$$a2128/14643
000830495 0247_ $$2WOS$$aWOS:000402690200018
000830495 0247_ $$2altmetric$$aaltmetric:21044976
000830495 0247_ $$2pmid$$apmid:28584236
000830495 037__ $$aFZJ-2017-04036
000830495 082__ $$a000
000830495 1001_ $$0P:(DE-Juel1)130742$$aJosten, Elisabeth$$b0$$eCorresponding author
000830495 245__ $$aSuperlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly
000830495 260__ $$aLondon$$bNature Publishing Group$$c2017
000830495 3367_ $$2DRIVER$$aarticle
000830495 3367_ $$2DataCite$$aOutput Types/Journal article
000830495 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522226781_32431
000830495 3367_ $$2BibTeX$$aARTICLE
000830495 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000830495 3367_ $$00$$2EndNote$$aJournal Article
000830495 520__ $$aUnderstanding the assembly of nanoparticles into superlattices with well-defined morphology and structure is technologically important but challenging as it requires novel combinations of in-situ methods with suitable spatial and temporal resolution. In this study, we have followed evaporation-induced assembly during drop casting of superparamagnetic, oleate-capped γ-Fe2O3 nanospheres dispersed in toluene in real time with Grazing Incidence Small Angle X-ray Scattering (GISAXS) in combination with droplet height measurements and direct observation of the dispersion. The scattering data was evaluated with a novel method that yielded time-dependent information of the relative ratio of ordered (coherent) and disordered particles (incoherent scattering intensities), superlattice tilt angles, lattice constants, and lattice constant distributions. We find that the onset of superlattice growth in the drying drop is associated with the movement of a drying front across the surface of the droplet. We couple the rapid formation of large, highly ordered superlattices to the capillary-induced fluid flow. Further evaporation of interstitital solvent results in a slow contraction of the superlattice. The distribution of lattice parameters and tilt angles was significantly larger for superlattices prepared by fast evaporation compared to slow evaporation of the solvent
000830495 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000830495 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000830495 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000830495 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000830495 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000830495 588__ $$aDataset connected to CrossRef
000830495 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000830495 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000830495 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000830495 7001_ $$0P:(DE-HGF)0$$aWetterskog, Erik$$b1
000830495 7001_ $$00000-0003-4951-235X$$aGlavic, Artur$$b2
000830495 7001_ $$0P:(DE-HGF)0$$aBoesecke, Peter$$b3
000830495 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b4$$ufzj
000830495 7001_ $$0P:(DE-Juel1)128665$$aBrauweiler-Reuters, Elke$$b5$$ufzj
000830495 7001_ $$0P:(DE-Juel1)130928$$aRücker, Ulrich$$b6$$ufzj
000830495 7001_ $$0P:(DE-HGF)0$$aSalazar-Alvarez, German$$b7
000830495 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b8$$ufzj
000830495 7001_ $$0P:(DE-HGF)0$$aBergström, Lennart$$b9
000830495 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-017-02121-4$$gVol. 7, no. 1, p. 2802$$n1$$p2802$$tScientific reports$$v7$$x2045-2322$$y2017
000830495 8564_ $$uhttps://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.pdf$$yOpenAccess
000830495 8564_ $$uhttps://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.gif?subformat=icon$$xicon$$yOpenAccess
000830495 8564_ $$uhttps://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000830495 8564_ $$uhttps://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000830495 8564_ $$uhttps://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000830495 8564_ $$uhttps://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000830495 909CO $$ooai:juser.fz-juelich.de:830495$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000830495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b4$$kFZJ
000830495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128665$$aForschungszentrum Jülich$$b5$$kFZJ
000830495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130928$$aForschungszentrum Jülich$$b6$$kFZJ
000830495 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b8$$kFZJ
000830495 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000830495 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000830495 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000830495 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000830495 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000830495 9141_ $$y2017
000830495 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000830495 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000830495 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000830495 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000830495 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000830495 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000830495 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000830495 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000830495 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000830495 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000830495 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000830495 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000830495 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000830495 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000830495 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000830495 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000830495 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000830495 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000830495 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000830495 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x3
000830495 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x4
000830495 9801_ $$aFullTexts
000830495 980__ $$ajournal
000830495 980__ $$aVDB
000830495 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000830495 980__ $$aI:(DE-Juel1)PGI-4-20110106
000830495 980__ $$aI:(DE-82)080009_20140620
000830495 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000830495 980__ $$aI:(DE-Juel1)ICS-8-20110106
000830495 980__ $$aUNRESTRICTED
000830495 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000830495 981__ $$aI:(DE-Juel1)IBI-3-20200312