001     830495
005     20250129094253.0
024 7 _ |a 10.1038/s41598-017-02121-4
|2 doi
024 7 _ |a 2128/14643
|2 Handle
024 7 _ |a WOS:000402690200018
|2 WOS
024 7 _ |a altmetric:21044976
|2 altmetric
024 7 _ |a pmid:28584236
|2 pmid
037 _ _ |a FZJ-2017-04036
082 _ _ |a 000
100 1 _ |a Josten, Elisabeth
|0 P:(DE-Juel1)130742
|b 0
|e Corresponding author
245 _ _ |a Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly
260 _ _ |a London
|c 2017
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522226781_32431
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the assembly of nanoparticles into superlattices with well-defined morphology and structure is technologically important but challenging as it requires novel combinations of in-situ methods with suitable spatial and temporal resolution. In this study, we have followed evaporation-induced assembly during drop casting of superparamagnetic, oleate-capped γ-Fe2O3 nanospheres dispersed in toluene in real time with Grazing Incidence Small Angle X-ray Scattering (GISAXS) in combination with droplet height measurements and direct observation of the dispersion. The scattering data was evaluated with a novel method that yielded time-dependent information of the relative ratio of ordered (coherent) and disordered particles (incoherent scattering intensities), superlattice tilt angles, lattice constants, and lattice constant distributions. We find that the onset of superlattice growth in the drying drop is associated with the movement of a drying front across the surface of the droplet. We couple the rapid formation of large, highly ordered superlattices to the capillary-induced fluid flow. Further evaporation of interstitital solvent results in a slow contraction of the superlattice. The distribution of lattice parameters and tilt angles was significantly larger for superlattices prepared by fast evaporation compared to slow evaporation of the solvent
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 1
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 2
536 _ _ |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)
|0 G:(DE-HGF)POF3-6213
|c POF3-621
|f POF III
|x 3
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 4
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-1: Small angle scattering diffractometer
|f NL3b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS1-20140101
|5 EXP:(DE-MLZ)KWS1-20140101
|6 EXP:(DE-MLZ)NL3b-20140101
|x 0
700 1 _ |a Wetterskog, Erik
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Glavic, Artur
|0 0000-0003-4951-235X
|b 2
700 1 _ |a Boesecke, Peter
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Feoktystov, Artem
|0 P:(DE-Juel1)144382
|b 4
|u fzj
700 1 _ |a Brauweiler-Reuters, Elke
|0 P:(DE-Juel1)128665
|b 5
|u fzj
700 1 _ |a Rücker, Ulrich
|0 P:(DE-Juel1)130928
|b 6
|u fzj
700 1 _ |a Salazar-Alvarez, German
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Brückel, Thomas
|0 P:(DE-Juel1)130572
|b 8
|u fzj
700 1 _ |a Bergström, Lennart
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1038/s41598-017-02121-4
|g Vol. 7, no. 1, p. 2802
|0 PERI:(DE-600)2615211-3
|n 1
|p 2802
|t Scientific reports
|v 7
|y 2017
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/830495/files/art_10.1038_s41598-017-02121-4.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:830495
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144382
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128665
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130572
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 4
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 3
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 4
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21