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a b s t r a c t 

It has recently been shown that an electron vortex beam can be generated by the magnetic field sur- 
rounding the tip of a dipole-like magnet. This approach can be described using the magnetic Aharonov- 
Bohm effect and is associated with the fact that the end of a long magnetic rod can be treated approx- 
imately as a magnetic monopole. However, it is difficult to vary the magnetisation of the rod in such a 
setup and the electron beam vorticity is fixed for a given tip shape. Here, we show how a similar be- 
haviour, which has the advantage of easy tuneability, can be achieved by making use of the electrostatic 
Aharonov-Bohm effect associated with an electrostatic dipole line. We highlight the analogies between 
the magnetic and electrostatic cases and use simulations of in-focus, Fresnel and Fraunhofer images to 
show that a device based on two parallel, oppositely charged lines that each have a constant charge den- 
sity can be used to generate a tuneable electron vortex beam. We assess the effect of using a dipole 
line that has a finite length and show that if the charge densities on the two lines are different then an 
additional biprism-like effect is superimposed on the electron-optical phase. 

© 2017 The Authors. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The term vortex beam (VB) describes freely propagating parti- 
cles that have a helical wavefront and carry an amount of orbital 
angular momentum (OAM) about their axis of propagation that is 
non-zero and may be quantised. In light optics, VBs are now used 
in many applications, such as optical tweezers and spanners for 
nano-manipulation, phase contrast imaging and both classical and 
quantum communication ( e.g. , [1] ). It is expected that similar suc- 
cess can be achieved in electron microscopy, where an electron VB 
(EVB) could be used to investigate magnetic properties of materi- 
als at the atomic or near-atomic scale, to manipulate nanoparticles 
or to measure electron-optical parameters (see, e.g. , the reviews of 
[2,3] ). In analogy to light optics [4–6] , it is envisaged that the use 
of a spiral phase plate could also be used to improve the contrast 
of weakly scattering biological specimens [7] . 
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EVBs can be generated by using a thin film of suitably varying 
thickness that imprints on the electron beam a spirally increasing 
phase front [8] , a holographic fork aperture [9,10] , a holographic 
spiral aperture [11,12] , a hardware aberration corrector [13] or the 
magnetic field surrounding the sharp tip of a dipole-like magnet 
[7,14] . The latter approach is based on the magnetic Aharonov- 
Bohm effect [15] and relies on the fact that the end of a long mag- 
netic rod can be described approximately as a magnetic monopole. 
However, it is not straightforward to vary the magnetisation of 
such a rod once it has been fabricated. The device therefore suf- 
fers from limited tuneability for altering the vorticity of the EVB. 

This drawback can be overcome by using the electrostatic coun- 
terpart of the Aharonov-Bohm effect [16–20] and specifically by 
using the electrostatic field at the end of a long dipole to cre- 
ate an electrostatic monopole field. Such a device can be approxi- 
mated experimentally by covering one side of a metallic wire with 
a different metal so that the contact potential difference creates 
a dipole field [16,17] , or alternatively by using a rod coated with 
a material such as ZnO followed by the angled evaporation of a 
metal such as Au [21] . However, in both of these arrangements the 
phase shift can only be varied by rotating the wire or rod, also re- 
sulting in limited tuneability. 

http://dx.doi.org/10.1016/j.ultramic.2017.06.001 
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Here, we propose to create an electrostatic monopole field by 
using two thin metallic parallel wires, to which an external voltage 
source is used to apply a potential difference. Such an arrangement 
is difficult to realise experimentally, but is highly versatile because 
the potential difference applied to the wires can be varied at will, 
limited only by the possibility of an electrical discharge between 
the wires. 

After reviewing the basic analogies between the magnetic and 
electrostatic Aharonov-Bohm effects, we introduce the system of 
two parallel lines that carry opposite but constant charge density 
distributions. We show that the two wires constitute an electro- 
static analogue of a uniformly-magnetised bar. Based on our pre- 
vious experience in the study of caustics arising from electrostatic 
fields between two nearly-aligned tips that were subjected to op- 
posite potentials [22] , we suggest that such a device can be fab- 
ricated from two suitably-shaped metallic wires, whose surfaces 
coincide with desired equipotential surfaces at a chosen distance 
from the line charges. We argue that two rounded parallel metal- 
lic wires should provide a good approximation to the ideal case. 
The influence of the lengths of the wires and the charge distribu- 
tions on them on Fresnel and Fraunhofer diffraction patterns are 
presented and discussed. 

2. Theoretical considerations 

The electrostatic scalar potential associated with an elementary 
dipole of moment p = qδl = (p x , p y , p z ) is given by the expression 
[23] 

V (x, y, z) = 
1 

4 πǫ0 

p · R 

R 3 
, (1) 

where R = (x, y, z) . 
According to the high energy or phase object approximation 

[20,24] , a weak electromagnetic field can be approximated (in the 
gauge div A = 0 ) by a thin specimen, which is located at the po- 
sition of the field sources ( e.g. , metallic wires or magnetic nee- 
dles) in the electron beam direction and characterised by a two- 
dimensional transmission function of the form 

A (x, y ) exp (iϕ(x, y )) , (2) 

where the amplitude A ( x, y ) is zero in the shadows of the supports 
if they are opaque to electrons. 

The electron-optical phase shift ϕ( x, y ) can be written in the 
form 

ϕ(x, y ) = 
π

λE 

∫ 

z 
V (x, y, z) dz −

e 

h̄ 

∫ 

z 
A z (x, y, z) dz, (3) 

where the incident electron beam direction z is aligned with the 
optical axis, e is the absolute value of the electron charge, ℏ is 
the reduced Planck constant, λ is the relativistically corrected de 
Broglie electron wavelength, eE is the relativistically corrected elec- 
tron energy and A z ( x, y, z ) is the z component of the magnetic vec- 
tor potential (not to be confused with the amplitude A ( x, y )). The 
integral is extended along the z axis, with integration limits that 
include all of the field. 

It follows from Eqs. 1 and 2 that for an electrostatic dipole 

ϕ e (r ) = 
π

λE 

1 
2 πǫ0 

p x x + p y y 

x 2 + y 2 
. (4) 

Direct integration can then be used to evaluate the phase shift 
associated with a continuous distribution of electric dipoles that 
are aligned along x ( i.e. , p y = 0 ) and distributed uniformly along 
the y axis between −a and a with constant density n el , resulting in 
the expression 

ϕ ld (r ) = 
π

λE 

1 
2 πǫ0 

p x n el 

[ 

arctan 
(

a − y 

x 

)

+ arctan 
(

a + y 

x 

)] 

. (5) 

Fig. 1. Line charges of length 100 µm and separation 200 nm (white lines) with 
constant charge densities of C V = 1 . The overlaid amplitude images (black outlines) 
show corresponding ± 2 V potential surfaces. The left image (scale bar 200 nm) 
shows the region around the tips. The right image shows a wider area (scale bar 1 
µm). 

In the limit a → ∞ : 

ϕ ld (r ) = 
π

λE 

p x n el 
2 ǫ0 

sign (x ) , (6) 

which describes a constant phase difference that depends on elec- 
tron energy eE and wavelength λ, as well as on the orientation of 
the dipoles. 

A similar calculation of the phase shift for a magnetic flux tube, 
which carries magnetic flux Φ, has finite length and is aligned 
along the y direction [20,23,25] , results in the expression 

ϕ f t (r ) = 
e 

h̄ 

Φ

2 π

[ 

arctan 
(

a − y 

x 

)

+ arctan 
(

a + y 

x 

)] 

. (7) 

For an infinite flux tube: 

ϕ f t (r ) = 
e 

h̄ 

Φ

2 
sign (x ) , (8) 

which describes a phase difference that is independent of electron 
energy and wavelength and equal to that calculated by Aharonov 
and Bohm [15] . 

The formal identity between the electrostatic and magnetic 
cases shows that the phase shift of a line of electrostatic dipoles 
is equivalent to that of a magnetic flux tube. The phase distribu- 
tion at the end of an electric dipole line can therefore be consid- 
ered to be the electrostatic analogue of the phase distribution of a 
magnetic monopole at the end of a magnetic flux tube. 

We emphasise that the magnetic flux tube and the line of elec- 
trostatic dipoles are both limiting cases that cannot be realised 
perfectly in practice. In the magnetic case, the closest approach 
is represented by a magnetic slab of width 2 w , which can be de- 
scribed by integrating Eq. 7 along x between −w and w [26] . The 
result is a complicated analytical expression that is reported in 
[27] . A similar calculation carried out for the electrostatic case us- 
ing Eq. 5 leads to the conclusion that the phase shift is equiva- 
lent to that of two oppositely charged segments, which are sepa- 
rated by w , have a constant charge density along each of them and 
therefore represent the electrostatic analog of the magnetic bar. 

3. The electrostatic field of two charged segments 

In a recent study of caustics [22] , we obtained an analytical 
expression for the electrostatic potential and the electron-optical 
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Fig. 2. Equiphase lines of spacing π /4 radians and overlaid amplitude image, shown 
for a 1 µm × 1 µm field of view, a wire length of 100 µm and a wire separation of 
200 nm. 

phase shift of a line charge of constant charge density K , which lies 
in the z = 0 plane from (0 , −a ) to (0, 0) and is compensated by a 
neutralising charge in the same plane at ( x D , y D ). The neutralising 
charge in this simple model can be thought of as being located 
on a nearby conductor, which may be the side of the specimen 
holder or the wall of the microscope. As the neutralising charge is 
far from the end of the wire of interest, its influence on the poten- 
tial can be neglected and the potential of the grounded conductor 
can be taken as 0 V. 

The electrostatic potential in the z = 0 plane and the associated 
electron-optical phase shift, respectively, are given by the expres- 
sions 

V (x, y, 0) = C V 

[ 

log 

( 
√ 

(a + y ) 2 + x 2 + a + y 
√ 

x 2 + y 2 + y 

) 

−
a 

√ 

(x + x D ) 2 + (y + y D ) 2 

] 

(9) 

Fig. 3. Equiphase lines of spacing π /4 radians and overlaid amplitude image, shown 
for a 25 µm × 25 µm field of view. The left image corresponds to line charges of 
length 20 µm. The right image corresponds to line charges of length 100 µm. A 
beam-limiting aperture of diameter 20 µm is also shown. 

and 

ϕ(x, y ) = C E C V 
[

−(a + y ) log 
(

(a + y ) 2 + x 2 
)

+ y log 
(

x 2 + y 2 
)

+ 2 a + 2 x tan −1 
(

y 

x 

)

−2 x tan −1 
(

a + y 

x 

)

+ a log 
(

(x + x D ) 
2 

+ (y + y D ) 
2 
)]

, (10) 

where 

C V = 
K 

4 πǫ0 
(11) 

and the interaction constant 

C E = 
π

λE 
. (12) 

In particular, by taking two parallel line charges of equal length 
and opposite sign ( i.e. , the electrostatic analog of the magnetic 
bar), the total charge is zero and there is no longer a need to in- 
troduce neutralising charges at large distances from the region of 
interest. Although line charges are an idealisation, their field can 
be reproduced exactly if two symmetric concave equipotential sur- 
faces around the lines are filled with a metallic material, biased at 
opposite potentials and completely opaque to electrons [28] . 

Figure 1 shows the amplitude A ( x, y ) of the transmission func- 
tion, calculated in the high energy or phase object approximation, 
for two parallel charged lines, which are 20 µm in length and 200 
nm apart and oppositely biased by an external voltage source. By 
plotting equipotential surfaces in the object plane ( i.e. , in the plane 
of the charged lines) using Eq. 9 with C V = 1 , values of poten- 
tial corresponding to the shapes of the two wires were chosen. In 
Fig. 1 , the potentials are taken to be ± 2 V. By considering the 

Fig. 4. Simulated images generated for line charges of length 100 µm and a potential difference of 4 V. (a) Fraunhofer diffraction image (scale bar 0.5 µm −1 ). (b) - (d) show 

Fresnel images (scale bar 5 µm) for defocus values Z of 2, 4 and 6 cm, respectively. 
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Fig. 5. Simulated images generated for line charges of length 100 µm and a potential difference of 20 V. (a) Fraunhofer diffraction image (scale bar 0.5 µm −1 ). (b) - (d) 
show Fresnel images (scale bar 5 µm) for defocus values Z of 2, 4 and 6 cm, respectively. 

Fig. 6. Simulated images generated for line charges of length 100 µm and a potential difference of 40 V. (a) Fraunhofer diffraction image (scale bar 0.5 µm −1 ). (b) - (d) 
show Fresnel images (scale bar 5 µm) for defocus values Z of 2, 4 and 6 cm, respectively. 

Fig. 7. Simulated images generated for line charges of length 20 µm and a potential difference of 40 V. (a) Fraunhofer diffraction image (scale bar 0.5 µm −1 ). (b) - (d) show 

Fresnel images (scale bar 5 µm) for defocus values Z of 2, 4 and 6 cm, respectively. 

wires to be opaque to electrons, the amplitude A ( x, y ) was chosen 
to be zero for values of potential inside the wires and unity out- 
side. The left part of Fig. 1 shows the amplitude locally around the 
tips of the wires (scale bar 200 nm), while the right part shows a 
wider area (scale bar 1 µm). The white lines within the shadows 
mark the positions of the line charges. The shapes are the same for 
charged lines that are longer than 20 µm. 

The phase shift was calculated for 300 kV electrons using 
Eq. 10 . The resulting equiphase lines are shown in Fig. 2 with a 
spacing of π /4, alongside the amplitude, for a square field of view 

of side 1 µm. Figure 3 shows the equiphase lines and amplitude 
over a much larger area, together with an aperture of size 20 µm. 
In practice, such a metallic aperture should be placed in a plane 
conjugate to that of the wires in order not to perturb their fields. 
The left part of Fig. 3 corresponds to a charged line of length 20 
µm and the right part to a charged line of length 100 µm. The op- 
posite electrostatic monopole results in bending of the equiphase 
lines, which is more evident for the charged line of length 20 µm 

(left) than for that of length 100 µm (right). For a potential dif- 

ference of 4 V, the phase difference is 5.2 π , corresponding to an 
orbital angular momentum of 2.6. For the same wire shape, larger 
values of potential difference can be obtained by varying the value 
of C V . 

It should be noted that the shapes of the wires are very im- 
portant, in order to approximate the desired electrostatic configu- 
ration. For example, for charged perfectly cylindrical wires there is 
predicted to be an accumulation of charge at the tips, which may 
negatively affect the desired spiralling phase shift [29] . 

4. Results of simulations 

Defocused images formed by illuminating a specimen using a 
coherent electron beam were simulated (in the paraxial approxi- 
mation) by calculating the image wavefunction in the observation 
plane ( X, Y, Z ), where Z is the distance from the specimen plane, 
using the Kirchhoff-Fresnel integral [30] 

ψ (X, Y, Z) = 
exp (iβ) 

λZ 

∫ ∫ 

A (x, y ) exp 

{

iπ

λZ 
[(x − X ) 2 
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+(y − Y ) 2 + ϕ(x, y )] 

}

d xd y, (13) 

where λ is the de Broglie wavelength of the incident electrons and 
β is a phase factor that is unimportant here as only the intensity 
in the image plane, which is proportional to | ψ | 2 , is relevant. Plane 
wave illumination was assumed. 

We evaluated the Kirchhoff-Fresnel integral using a Fourier- 
transform-based method for square regions of side 25 µm using 
1024 × 1024 sampling points. In the first step, a Fourier trans- 
form was used to calculate the spectrum of the image, which 
corresponds to the Fraunhofer diffraction image of the specimen. 
The spectrum was multiplied by a suitable quadratic phase factor 
[20,31] . An inverse Fourier transform was used to obtain the ampli- 
tude of the defocused image, while its modulus squared provided 
the image intensity. 

Figure 4 shows the result of this procedure for a charged line of 
length 100 µm and a potential difference of 4 V. Figure 4 (a) shows 
a Fraunhofer diffraction image, i.e. , the spatial frequency spectrum. 
Corresponding Fresnel diffraction images of the specimen at defo- 
cus values of 2, 4 and 6 cm are shown in Figs 4 (b), 4 (c) and 4 
(d), respectively. It should be noted that the Fraunhofer diffraction 
image does not display a clear dark area at its centre, as is typi- 
cally observed for vortex beams. It is probably absent here due to 
the combined effects of diffraction from the shadow of the wires 
and the finite width between them. In contrast, the Fresnel diffrac- 
tion images clearly show dark areas at their centres, with radii that 
increase with defocus. 

We now investigate the effect on the images of the potential 
difference between the wires. Figure 5 shows results obtained for a 
potential difference of 20 V, which corresponds to an orbital angu- 
lar momentum close to 13, whereas Fig. 6 shows results obtained 
for a potential difference of 40 V, which corresponds to an orbital 
angular momentum close to 26. Both figures show that the Fraun- 
hofer diffraction image now has a clear intensity minimum at its 
centre and circular symmetry, with a radius that increases with ap- 
plied potential difference. The Fresnel diffraction images also show 

impressive contrast phenomena surrounding the center of the elec- 
trostatic monopole. 

In Fig. 3 , we showed that the length of the charged lines has 
a strong influence on the phase, especially when the opposite 
monopole begins to influence the region of interest. Figure 7 shows 
the effect on the resulting Fraunhofer and Fresnel diffraction im- 
ages for a potential difference between the wires of 40 V and for a 
wire length of 20 µm. (The effect is most visible at higher values of 
potential difference). The main effect of the reduction in length is 
seen in the Fraunhofer diffraction image shown in Fig. 7 (a), which 
is now strongly deformed and no longer has circular symmetry. In 
contrast, it is hardly detectable in the Fresnel diffraction images 
shown in Figs 7 (b-d). 

More severe effects are seen in the Fraunhofer and Fresnel 
diffraction images when the two wires are not at opposite poten- 
tials, but an additional positive (or negative) potential is added to 
both of them. The physical origin of such an effect could be at- 
tributed to electron-beam-induced charging of dielectric material 
used to support the wires (in case they are not rigid enough), or 
alternatively to charging of the wires themselves. 

Figure 8 shows results obtained for a defocus Z of 4 cm when 
adding potentials of (a, b) 0 V, (c, d) 0.01 V, (e, f) 0.05 V and 
(g, h) 0.1 V. Just as in Fig. 7 , the most dramatic effects are seen 
in the Fraunhofer diffraction images, where the original circular 
intensity distribution is first deformed and finally broken. This ef- 
fect is probably due to the breaking of the circular-spiral symmetry 
by the added line charge. In the corresponding Fresnel diffraction 
images, only a slight deformation of the central circular feature is 
seen and a weak convergent biprism-like effect appears along the 

Fig. 8. Simulated Fraunhofer images (left) and Fresnel images (right) generated for 
line charges of length 100 µm, a potential difference of 40 V and added potentials 
of (a, b) 0 V, (c, d) 0.01 V, (e, f) 0.05 V and (g, h) 0.1 V. The Fresnel images were 
calculated for a defocus value Z of 4 cm. The scale bar in the diffraction images (a, 
c, e, g) is 0.5 µm −1 . The scale bar in the Fresnel images (b, d, f, h) is 5 µm. 

diffraction image of the wires. This effect is most evident for the 
largest added potential. 

In spite of the very large fields between the wires, which 
are on the order of several tens of MV/m, we are well below 

the limits for field emission [32] and of electrical breakdown in 
small gaps [33] , as also demonstrated by preliminary experimental 
tests. 
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5. Conclusions 

In this paper, we have demonstrated that the electrostatic 
Aharonov-Bohm effect associated with two parallel line charges 
can be used to generate on-axis electron vortex beams that can 
be used to impart a continuously tuneable orbital angular momen- 
tum to an electron beam with almost no loss of intensity, apart 
from the small fraction of the beam that is shielded by the charged 
wires and their support, thereby demonstrating a clear advantage 
over all other approaches for creating electron vortex beams. We 
have also investigated the effect of the length of the wires on Fres- 
nel and Fraunhofer images, as well as a biprism-like effect due 
to possible charging of the wires. Our simulations have been per- 
formed for a setup that can be realised using present-day tech- 
nology. However, the essential ingredient of the effect is an asym- 
metric dipole-like line charge distribution, which can be realised in 
many different ways. Experiments based on the present proposal 
are in progress. 
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