000830535 001__ 830535 000830535 005__ 20240711113830.0 000830535 0247_ $$2doi$$a10.1088/1741-4326/aa663a 000830535 0247_ $$2ISSN$$a0029-5515 000830535 0247_ $$2ISSN$$a1741-4326 000830535 0247_ $$2WOS$$aWOS:000403340600006 000830535 0247_ $$2altmetric$$aaltmetric:20924036 000830535 037__ $$aFZJ-2017-04067 000830535 082__ $$a530 000830535 1001_ $$0P:(DE-Juel1)130040$$aHuber, A.$$b0$$eCorresponding author$$ufzj 000830535 245__ $$aThe effect of the isotope on the H-mode density limit 000830535 260__ $$aVienna$$bIAEA$$c2017 000830535 3367_ $$2DRIVER$$aarticle 000830535 3367_ $$2DataCite$$aOutput Types/Journal article 000830535 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1497248516_22222 000830535 3367_ $$2BibTeX$$aARTICLE 000830535 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000830535 3367_ $$00$$2EndNote$$aJournal Article 000830535 520__ $$aIn order to understand the mechanisms for the H-mode density limit in machines with fully metallic walls, systematic investigations of H-mode density limit plasmas in experiments with deuterium and hydrogen external gas fuelling have been performed on JET-ILW.The observed H-mode density limit on JET in D- as well as in H-plasmas demonstrates similar operation phases: the stable H-mode phase, degrading H-mode, breakdown of the H-mode with energy confinement deterioration accompanied by a dithering cycling phase, followed by the L-mode phase.The density limit is not related to an inward collapse of the hot core plasma due to an overcooling of the plasma periphery by radiation. Indeed, independently of the isotopic effect, the total radiated power stay almost constant during the H-mode phase until the H-L back transition. It was observed in D- and H-plasmas that neither detachment, nor the X-point MARFE itself do trigger the H-L transition and that they thus do not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the H-mode DL.By comparing similar discharges but fuelled with either deuterium or hydrogen, we have found that the H-mode density limit exhibits a dependence on the isotope mass: the density limit is up to 35% lower in hydrogen compared to similar deuterium plasma conditions (the obtained density limit is in agreement with the Greenwald limit for D-plasma). In addition, the density limit is nearly independent of the applied power both in deuterium or hydrogen fuelling conditions.The measured Greenwald fractions are consistent with the predictions from a theoretical model based on an MHD instability theory in the near-SOL. The JET operational domains are significantly broadened when increasing the plasma effective mass (e.g. tritium or deuterium–tritium operation), i.e. the L to H power threshold is reduced whereas the density limit for the L-mode back transition is increased. 000830535 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0 000830535 588__ $$aDataset connected to CrossRef 000830535 7001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b1$$ufzj 000830535 7001_ $$0P:(DE-HGF)0$$aBernert, M.$$b2 000830535 7001_ $$0P:(DE-Juel1)129976$$aBrezinsek, S.$$b3$$ufzj 000830535 7001_ $$0P:(DE-HGF)0$$aChankin, A. V.$$b4 000830535 7001_ $$0P:(DE-Juel1)130158$$aSergienko, G.$$b5$$ufzj 000830535 7001_ $$0P:(DE-Juel1)132145$$aHuber, V.$$b6$$ufzj 000830535 7001_ $$0P:(DE-HGF)0$$aAbreu, P.$$b7 000830535 7001_ $$0P:(DE-HGF)0$$aBoboc, A.$$b8 000830535 7001_ $$0P:(DE-HGF)0$$aBrix, M.$$b9 000830535 7001_ $$0P:(DE-HGF)0$$aCarralero, D.$$b10 000830535 7001_ $$0P:(DE-Juel1)129994$$aDelabie, E.$$b11$$ufzj 000830535 7001_ $$0P:(DE-HGF)0$$aEich, T.$$b12 000830535 7001_ $$0P:(DE-Juel1)130005$$aEsser, H. G.$$b13$$ufzj 000830535 7001_ $$0P:(DE-HGF)0$$aGuillemaut, C.$$b14 000830535 7001_ $$0P:(DE-Juel1)130043$$aJachmich, S.$$b15$$ufzj 000830535 7001_ $$0P:(DE-HGF)0$$aJoffrin, E.$$b16 000830535 7001_ $$0P:(DE-HGF)0$$aKallenbach, A.$$b17 000830535 7001_ $$0P:(DE-HGF)0$$aKruezi, U.$$b18 000830535 7001_ $$0P:(DE-Juel1)130789$$aLang, P.$$b19$$ufzj 000830535 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b20$$ufzj 000830535 7001_ $$0P:(DE-HGF)0$$aLowry, C. G.$$b21 000830535 7001_ $$0P:(DE-HGF)0$$aMaggi, C. F.$$b22 000830535 7001_ $$0P:(DE-HGF)0$$aMatthews, G. F.$$b23 000830535 7001_ $$0P:(DE-HGF)0$$aMeigs, A. G.$$b24 000830535 7001_ $$0P:(DE-Juel1)4596$$aMertens, Ph.$$b25$$ufzj 000830535 7001_ $$0P:(DE-Juel1)166412$$aReimold, F.$$b26$$ufzj 000830535 7001_ $$0P:(DE-HGF)0$$aSchweinzer, J.$$b27 000830535 7001_ $$0P:(DE-HGF)0$$aSips, G.$$b28 000830535 7001_ $$0P:(DE-HGF)0$$aStamp, M.$$b29 000830535 7001_ $$0P:(DE-HGF)0$$aViezzer, E.$$b30 000830535 7001_ $$0P:(DE-HGF)0$$aWischmeier, M.$$b31 000830535 7001_ $$0P:(DE-HGF)0$$aZohm, H.$$b32 000830535 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aa663a$$gVol. 57, no. 8, p. 086007 -$$n8$$p086007 -$$tNuclear fusion$$v57$$x1741-4326$$y2017 000830535 8564_ $$uhttps://juser.fz-juelich.de/record/830535/files/Huber_2017_Nucl._Fusion_57_086007.pdf$$yRestricted 000830535 8564_ $$uhttps://juser.fz-juelich.de/record/830535/files/Huber_2017_Nucl._Fusion_57_086007.pdf?subformat=pdfa$$xpdfa$$yRestricted 000830535 909CO $$ooai:juser.fz-juelich.de:830535$$pVDB 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130040$$aForschungszentrum Jülich$$b0$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b1$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b3$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130158$$aForschungszentrum Jülich$$b5$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132145$$aForschungszentrum Jülich$$b6$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129994$$aForschungszentrum Jülich$$b11$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130005$$aForschungszentrum Jülich$$b13$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130043$$aForschungszentrum Jülich$$b15$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130789$$aForschungszentrum Jülich$$b19$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b20$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4596$$aForschungszentrum Jülich$$b25$$kFZJ 000830535 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166412$$aForschungszentrum Jülich$$b26$$kFZJ 000830535 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0 000830535 9141_ $$y2017 000830535 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000830535 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000830535 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2015 000830535 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000830535 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000830535 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000830535 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000830535 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000830535 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000830535 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000830535 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000830535 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000830535 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0 000830535 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1 000830535 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie $$x2 000830535 980__ $$ajournal 000830535 980__ $$aVDB 000830535 980__ $$aI:(DE-Juel1)IEK-4-20101013 000830535 980__ $$aI:(DE-Juel1)JSC-20090406 000830535 980__ $$aI:(DE-Juel1)ICS-3-20110106 000830535 980__ $$aUNRESTRICTED 000830535 981__ $$aI:(DE-Juel1)IFN-1-20101013