001     830535
005     20240711113830.0
024 7 _ |a 10.1088/1741-4326/aa663a
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a WOS:000403340600006
|2 WOS
024 7 _ |a altmetric:20924036
|2 altmetric
037 _ _ |a FZJ-2017-04067
082 _ _ |a 530
100 1 _ |a Huber, A.
|0 P:(DE-Juel1)130040
|b 0
|e Corresponding author
|u fzj
245 _ _ |a The effect of the isotope on the H-mode density limit
260 _ _ |a Vienna
|c 2017
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1497248516_22222
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In order to understand the mechanisms for the H-mode density limit in machines with fully metallic walls, systematic investigations of H-mode density limit plasmas in experiments with deuterium and hydrogen external gas fuelling have been performed on JET-ILW.The observed H-mode density limit on JET in D- as well as in H-plasmas demonstrates similar operation phases: the stable H-mode phase, degrading H-mode, breakdown of the H-mode with energy confinement deterioration accompanied by a dithering cycling phase, followed by the L-mode phase.The density limit is not related to an inward collapse of the hot core plasma due to an overcooling of the plasma periphery by radiation. Indeed, independently of the isotopic effect, the total radiated power stay almost constant during the H-mode phase until the H-L back transition. It was observed in D- and H-plasmas that neither detachment, nor the X-point MARFE itself do trigger the H-L transition and that they thus do not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the H-mode DL.By comparing similar discharges but fuelled with either deuterium or hydrogen, we have found that the H-mode density limit exhibits a dependence on the isotope mass: the density limit is up to 35% lower in hydrogen compared to similar deuterium plasma conditions (the obtained density limit is in agreement with the Greenwald limit for D-plasma). In addition, the density limit is nearly independent of the applied power both in deuterium or hydrogen fuelling conditions.The measured Greenwald fractions are consistent with the predictions from a theoretical model based on an MHD instability theory in the near-SOL. The JET operational domains are significantly broadened when increasing the plasma effective mass (e.g. tritium or deuterium–tritium operation), i.e. the L to H power threshold is reduced whereas the density limit for the L-mode back transition is increased.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wiesen, S.
|0 P:(DE-Juel1)5247
|b 1
|u fzj
700 1 _ |a Bernert, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 3
|u fzj
700 1 _ |a Chankin, A. V.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sergienko, G.
|0 P:(DE-Juel1)130158
|b 5
|u fzj
700 1 _ |a Huber, V.
|0 P:(DE-Juel1)132145
|b 6
|u fzj
700 1 _ |a Abreu, P.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Boboc, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Brix, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Carralero, D.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Delabie, E.
|0 P:(DE-Juel1)129994
|b 11
|u fzj
700 1 _ |a Eich, T.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Esser, H. G.
|0 P:(DE-Juel1)130005
|b 13
|u fzj
700 1 _ |a Guillemaut, C.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Jachmich, S.
|0 P:(DE-Juel1)130043
|b 15
|u fzj
700 1 _ |a Joffrin, E.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Kallenbach, A.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Kruezi, U.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Lang, P.
|0 P:(DE-Juel1)130789
|b 19
|u fzj
700 1 _ |a Linsmeier, Ch.
|0 P:(DE-Juel1)157640
|b 20
|u fzj
700 1 _ |a Lowry, C. G.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Maggi, C. F.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Matthews, G. F.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Meigs, A. G.
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Mertens, Ph.
|0 P:(DE-Juel1)4596
|b 25
|u fzj
700 1 _ |a Reimold, F.
|0 P:(DE-Juel1)166412
|b 26
|u fzj
700 1 _ |a Schweinzer, J.
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Sips, G.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Stamp, M.
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Viezzer, E.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Wischmeier, M.
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Zohm, H.
|0 P:(DE-HGF)0
|b 32
773 _ _ |a 10.1088/1741-4326/aa663a
|g Vol. 57, no. 8, p. 086007 -
|0 PERI:(DE-600)2037980-8
|n 8
|p 086007 -
|t Nuclear fusion
|v 57
|y 2017
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/830535/files/Huber_2017_Nucl._Fusion_57_086007.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/830535/files/Huber_2017_Nucl._Fusion_57_086007.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:830535
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130040
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)5247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)132145
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)129994
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)130005
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)130043
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)130789
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)157640
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)4596
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)166412
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-3-20110106
|k ICS-3
|l Weiche Materie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)ICS-3-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21