000830540 001__ 830540 000830540 005__ 20210129230534.0 000830540 037__ $$aFZJ-2017-04072 000830540 041__ $$aEnglish 000830540 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, Andreas$$b0$$eCorresponding author$$ufzj 000830540 1112_ $$aApplied Inverse Problems 2017$$cHangzhou$$d2017-05-29 - 2017-06-02$$gAIP2017$$wChina 000830540 245__ $$aNon-destructive testing and interior transmission eigenvalues 000830540 260__ $$c2017 000830540 3367_ $$033$$2EndNote$$aConference Paper 000830540 3367_ $$2DataCite$$aOther 000830540 3367_ $$2BibTeX$$aINPROCEEDINGS 000830540 3367_ $$2DRIVER$$aconferenceObject 000830540 3367_ $$2ORCID$$aLECTURE_SPEECH 000830540 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1497254935_22221$$xAfter Call 000830540 520__ $$aThe objective in non-destructive testing is to obtain a visualization of a given three-dimensional object's interior in order to reveal location, size, and geometry of inhomogeneities. Interior transmission eigenvalues can be used for this task. However, the efficient numerical calculation of the interior transmission eigenvalues is a challenging problem due to the fact that the corresponding interior transmission problem is non-linear, non-elliptic, and non-self-adjoint. In this talk, it is explained what interior transmission eigenvalues are, how they can be computed to high accuracy using boundary integral equations, andhow they can be used to visualize the interior of a given object.Finally, some open problems both from the theoretical and practical point of view are exemplified. 000830540 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0 000830540 909CO $$ooai:juser.fz-juelich.de:830540$$pVDB 000830540 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ 000830540 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000830540 9141_ $$y2017 000830540 920__ $$lno 000830540 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 000830540 980__ $$aconf 000830540 980__ $$aVDB 000830540 980__ $$aI:(DE-Juel1)JSC-20090406 000830540 980__ $$aUNRESTRICTED