
Exploiting In-Memory Processing Capabilities
for Density Functional Theory Applications

Paul F. Baumeister1, Thorsten Hater1, Dirk Pleiter1,
Hans Boettiger2, Thilo Maurer2, and José R. Brunheroto3

1 Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
2 IBM Deutschland Research & Development GmbH, 71032 Böblingen, Germany

3 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, US

Abstract. Processing-in-memory (PIM) is an approach to address the
data transport challenge in future HPC architectures and various designs
have been explored in the past. Despite, it remains unclear how scien-
tific applications could efficiently exploit massively-parallel HPC archi-
tectures integrating PIM modules. In this paper we address this question
for material science applications for which we ported relevant kernels to
the Active Memory Cube architecture developed by IBM Research.

1 Introduction

Over at least two decades exponential growth of arithmetic performance of HPC
architectures could be sustained. Exploiting this performance becomes more
challenging as with growing complexity massively-parallel architectures will be-
come limited by data transport. One approach to mitigate this problem is to
move processing pipelines closer to the locations where data is stored, as it is
done in processing-in-memory (PIM) architectures. Such architectures could be
particularly attractive for future, power-constrained supercomputers, because
potentially energy consuming data movements may be avoided. A recent exam-
ple of PIM architectures is IBM Research’s Active Memory Cube (AMC) [18].

While there are architectural arguments in favour of PIM-based HPC archi-
tectures, it remains unclear how efficiently such architectures could be exploited
by relevant scientific applications. The goal of this paper is to explore this ques-
tion for two materials science applications on the basis of the AMC architecture.

As of today, materials science applications consume a significant fraction of
the available HPC resources. It is one of the areas in science and engineering
that will significantly benefit from further growth of computational resources
and is expected to require exascale computing capabilities in the future.

A key technique in materials sciences is Density Functional Theory (DFT).
DFT simulations give access to an accurate prediction of the electronic ground
state structure, equilibrium geometries and thermodynamic properties of most
classes of materials, see [5] for an overview. The approach has grown from funda-
mental research to wide application in the field of materials research and design.

In this paper we consider two selected DFT-based applications, which dif-
fer significantly in terms of application performance characteristics. Both have

in common that they are highly scalable on current supercomputers. We have
ported performance relevant parts of these codes to the AMC architecture to
evaluate the performance in cycle-accurate simulations and assess the overall
benefits from performance profiles obtained on existing systems.

This paper makes the following contributions:

– We show results from implementations of relevant kernels of selected DFT
applications on a future processing-in-memory architecture and provide a
performance analysis based on cycle accurate simulations.

– To better understand the opportunities of such future technology, we provide
an assessment of future requirements of DFT applications.

– Based on results from implementation and performance analysis we explore
the features of the AMC architecture as well as its hardware parameters.

In the next section we provide background information on DFT-based meth-
ods and future developments in this application area, which is followed by details
of the AMC architecture in Sec. 3. After discussing details and performance char-
acteristics of the specific DFT applications considered in this paper (Sec. 4) we
discuss their implementation on AMC (Sec. 5). Based on an analysis of the ob-
tained performance, which is presented in Sec. 6, we discuss the suitability of
the AMC architecture in Sec. 7. Before concluding we provide a short overview
on related work in Sec. 8.

2 Application Background

In this investigation, we analyse kernels of two different implementations of Den-
sity Functional Theory (DFT), juRS [4, 23] and KKRnano [23]. Both applications
are optimised for high scalability and to address problems with a large number
of atoms, Natom � 1, 000, on massively-parallel machines. Their approach to the
problem differs as juRS solves for eigenstates of the DFT Hamiltonian whereas
KKRnano finds the electronic structure by operator inversion. KKRnano even
allows a truncation of very long-ranged interactions and, thus, transits into an
O(Natom) scaling behaviour. The linear scaling mode makes a million atoms fea-
sible as computer systems grow. So far, more than 200, 000 atomic sites could
already be processed during a pioneering run on an IBM Blue Gene/QTM system
providing a peak performance of 5.9 PFlop/s [25].

Future application requirements While we will use today’s applications to evalu-
ate a future technology, i.e. the Active Memory Cube, we also analyse future re-
quirements of these applications. Based on a questionnaire we analysed together
with domain experts on how, e.g., the application domain, the used methods and
algorithms, problem size and the resource requirements are expected to evolve.

According to [6] the development of methods for ab initio studies exhibits
various trends, one being the development towards a more precise methodology
overcoming the drawbacks of approximations made in current applications [17].
More computing resources will be required to either facilitate high throughput for

Fig. 1. Sketch of the
AMC lane architecture.
For more details see [18].

medium-sized problems as well as to address large-scale challenges. The former
will, e.g., be required to scan parameter spaces and evaluate high-dimensional
phase diagrams. The latter involves problems where a large number of atoms,
Natom, are required. Challenging problems are related to broken symmetries,
i.e. crystals with impurities, random alloys or amorphous materials. To address
these questions Natom � 105 atoms are often necessary.

The aforementioned applications, juRS and KKRnano, target such large
problem sizes. With the O(Natom)-mode of KKRnano exascale compute re-
sources allow to determine the electronic structure of a million atoms within
less than an hour and structural relaxation within a single day.

3 Active Memory Cubes

Recently, several new high-bandwidth memory technologies have been intro-
duced. Both, Hybrid Memory Cube (HMC) [14] as well as High Bandwidth
Memory (HBM) [15] have in common that they foresee a stack of DRAM dies
on top of a logical die. This logic die is currently mainly foreseen to facilitate data
transport, e.g. in the HMC architecture the logic die implements the memory
controller and a network interface via which the processor can access the mem-
ory. But in principle also processing of data could be supported at this level.
This approach is explored in a recent architectural proposal by IBM Research:
the Active Memory Cube (AMC) [18]. In this architecture 32 computational
lanes are added to the logic die, which also have access to the memory, i.e. the
memory becomes dual-ported as it continues to be accessible from the CPU.

Each lane is composed of four computation slices, which comprise a load-
store unit (LSU) as well as an arithmetic-logic unit (ALU), plus a control unit.
Each slice has a register file, which includes 32 scalar plus 16 vector computation
registers. All registers are 64-bit wide and each vector register has 32 elements.
See Fig. 1 for a sketch of the AMC lane architecture.

The computational lanes are micro-coded. In each clock cycle a lane can pro-
cess one Very Long Instruction Word (VLIW) composed of nine sub-instructions.
The instructions are read from a buffer which can hold 512 VLIW instruc-
tions. Due to the length of a VLIW instructions it is important to reduce the
required number of these instructions. In this architecture this is facilitated
through a temporal single-instruction-multiple-data (SIMD) paradigm. Instruc-
tions can be repeated up to 32 times, matching the length of the vector registers.

The arithmetic pipelines take 64-bit input operands and can complete in
each clock cycle one double-precision Fused Multiply-Add (FMA) or a two-way
SIMD single-precision FMA. Thus, up to 8 double-precision floating-point (FP)
operations can be completed per clock cycle in one lane. The peak performance
of one AMC running at a clock speed of 1.25 GHz is thus 320 GFlop/s in double-
precision. A slice can read the vector registers of the other slices, which allows to
distribute data over multiple register files. Furthermore, double-precision com-
plex arithmetic with real and imaginary part distributed over different slices can
be implemented without the need for data re-ordering instructions.

Load/store requests are buffered in a load-store queue with 192 entries. A lane
can load or store 8 Byte/cycle from or to the internal interconnect, i.e. the ratio
of memory bandwidth vs. FP performance is 1 Byte/Flop and thus significantly
larger than in typical processor architectures. Additional non-exposed arithmetic
units are given inside the memory controllers allowing to issue atomic update
operations onto memory locations. Here, the instruction set architecture foresees
integer and also 64-bit FP addition operations.

Each AMC features a network interface with a bandwidth of 32 GByte/s. It
can be used to connect to a processor or to chain multiple AMC devices in a
similar way as HMC devices.

The execution model foresees main programs to be executed on a general-
purpose CPU with computational lanes being used for off-loading small kernels.
It is planned to have VLIW instructions for the off-loaded kernels being gener-
ated by a compiler controlled through directives, e.g. OpenMP-4.0, see [18] for
details. Such a compiler is not yet available and therefore all sequences of VLIW
instructions have been implemented manually.

The maximum power envelope for dies within a 3D stack is small, since layers
cannot be cooled individually, yet. Assuming a design based on 14 nm technology,
the power consumption for an AMC device is expected to be around 10 W.

4 Applications and Performance Characteristics

Real-space grid DFT: juRS represent the DFT Hamiltonian on a uniform Carte-
sian real-space grid and follows the approach of iterative diagonalisation, see [4]
for details. The application of the grid Hamiltonian to wave functions reads

Ĥ |Ψk〉 =

[
− ~2

2m
(∂xx + ∂yy + ∂zz) + Vloc(x, y, z)

]
|Ψk〉 . (1)

The 3D Laplacian represents the kinetic energy operator in real-space represen-
tation. In juRS, it is approximated by an 8th-order finite-differences (FD) scheme
which leads to a 3D stencil operation on a uniform lattice of grid points. This
allows for a controllable accuracy and avoids FFTs and the related parallel scal-
ability issues completely. The selected FD approximation is symmetric around
the central coefficient, c0, with legs of 4 constant coefficients reaching into both
directions of each of the three spatial dimensions, see left side of Fig. 2. On most
architectures, the decomposition into three 1D FD stencils is benefitial. Then,

Fig. 2. Decomposition of
a 3D finite-difference sten-
cil (left) into three 1D
stencils (right). The cen-
tral coefficient of the
y and z-direction (hori-
zontal and vertical) are
merged into that of x
(red) leaving gaps.

Table 1. Requirements for the
relevant DFT kernels. The arith-
metic intensity (AI), given in the
limit of nx|y|z → ∞, represents
the ratio between compute and
data movement in Flop/Byte.

Kernel Flops Loads (8 Byte) Stores AI

fdd-Vx 32 · 17nx 32 · (8+nx)+nx 32nx 1.1
fdd-yz 32 · 16ny|z 32 · (8+2ny|z) 32ny|z 0.7
zgemm-16 32768 1536 512 2.0

only one stencil (x, kernel fdd-Vx) carries the central coefficients and the local
potential Vloc(x, y, z), see right side of Fig. 2, and the kernel fdd-yz with its
eight non-zero coefficients is called twice with different array strides. The grid
Hamiltonian may be applied to several wave functions Ψ with index k at once
in order to bundle communication of grid-halos. Details about the requirements
of the juRS finite-difference kernel are summarized in Table 1.

Green function DFT: KKRnano directly inverts the the DFT Hamiltonian ma-
trix, H. Instead of finding eigenstates, we search for columns of the Green func-
tion, x, i.e. a linear equation with multiple right-hand sides is solved. The so-
called tight-binding or screened formulation of the Green function formalism al-
lows for representing the Hamiltonian as short-ranged in real-space [26], i.e. its
application to a trial vector only couples elements that are associated to basis
functions localised on neighbouring atomic sites.

The parallelisation strategy foresees one atom per MPI process and we typ-
ically deal with 16 basis functions per atom and energy, resolving states with
different angular momentum. The solutions are found using the transpose-free
quasi-minimal residual technique [8] for 16 right hand sides at a time. Here, the
performance of the application depends almost exclusively on that of applying
the matrix H to vector x as

yi =
∑
j

Hijxj , yi, Hij , xj ∈ C16×16 . (2)

All elements of this equation are complex matrices of dimension 16, which thus
leads to a large number of multiplications of (double-precision) complex matrices
of dimension 16. These are implemented in a kernel called zgemm-16.

For this kernel we have an arithmetic intensity AI=2 (see Table 1). As each
AMC lane features a compute performance versus memory bandwidth ratio of
1 Flop/Byte we expect the performance of this kernel to be limited by the com-
pute capability.

5 Implementation on AMC

KKRnano The most important kernel of KKRnano, zgemm-16, can be consid-
ered as a specialised version of the BLAS routine zgemm which implements the
operation

C ← C +A ·B, A,B,C ∈ C16×16. (3)

Eq. (2) is evaluated many times to solve the linear set of equations iteratively
and the kernel zgemm-16 is invoked even more often. Within each application
of the Hamiltonian to a vector, zgemm-16 is executed about 16 000 times per
atom in KKRnano’s O(Natom)-mode and even more times without truncation
for linear scaling.

Our implementation in microcode makes use of the fact that the AMC’s
vector registers of each lane can hold up to 16 kiByte of data. Therefore, all
elements of A can be kept in the vector registers once they are loaded. Register
spills can be avoided completely. The elements of B are loaded successively into
scalar registers. The loops can be fully unrolled resulting in a kernel comprising
16 384 multiply-add operations. Exploiting the temporal (SIMD) paradigm of
pipelining we only need 384 VLIW instructions for implementing this kernel
(neglecting some entry and exit code). Due to the organisation of the vector
register hardware, random access is to vector register elements not possible.
This necessitates the reorganisation of the matrix-matrix product algorithm to
accumulate multiple results simultaneously, in our case 16 real and 16 imaginary
values. In other words, we compute one column of the solution matrix leveraging
the SIMD-in-time model

C0...15,j ← C0...15,j +
∑
k

A0...15,k ·Bk,j (4)

juRS finite-differences As the Hamiltonian is always applied to a larger set of
independent states at a time, we tile the set with index k into coherent subsets
of length 32 to match to AMC’s vector length.

A single-pass implementation of the finite-difference Laplacian stencil on a
3D array with nx × ny × nz lattice sites can only exploit data re-use in the
direction of the traversal of the 3D stencil. This corresponds to an arithmetic
intensity of 49 Flop/144 Byte = 0.34 Flop/Byte. On AMC such an implementa-
tion would be memory-bandwidth-bound. As no caches are present on the AMC,
it is advantageous to decompose the 3D stencil and perform three passes of a
1D FD stencil with index strides 1, nx and nxny for the x-, y-, and z-direction,
respectively, as described in Sec. 4 and Fig. 2. An overview of the characteristic
numbers of the FD kernels fdd-Vx and fdd-yz is given in Table 1.

Fig. 3 explains the slice-parallelisation strategy of the 1D FD derivative for
the implementation on AMC. Elements of the source array A holding the set of
wave functions to be derived are distributed in a cyclic fashion over the four slices.
All slices process the same sequence of instructions except for a phase shift by one
VLIW (32 cycles due to the vectorisation) between adjacent slices. Therefore,
all slices access the same lattice element at the same time exploiting that the

1
2
8

c
y
c
l
e
s

t
i
m
e

s1 ld A[1]

s3 ld A[3]

s0 ld A[4]

s0 st T[0]

s1 st T[1]

s2 st T[2]

s3 st T[3]

s
l
i
c
e

0

s
l
i
c
e

1

s
l
i
c
e

2

s
l
i
c
e

3

s2 ld A[7]

s1 ld A[6]

s3 ld A[5]

s2 ld A[−2]

s3 ld A[−1]

s0 ld A[−4]

s1 ld A[−3]

s0 ld A[0]

s2 ld A[2]

Fig. 3. Slice parallelisation
scheme for finite-differences.
Data flows from left to right
while time propagates from
top to bottom in the diagram.

read access to a vector register is shared across the slices of a lane. We schedule
the load instruction on elements of A seven VLIWs (although Fig. 3 shows only
a distance of four VLIWs) before all four slices access the shared vector register
holding elements of A for reading. This is equivalent to 7×32 cycles between the
issuing of the load and the usage of the element if no stalls are encountered. This
hides the typical memory access latencies of the AMC. Furthermore, a four-fold
loop unrolling allows for an efficient register allocation for this microcode so that
4× 4 elements on 32 independent grids are processed per iteration.

The kernel fdd-Vx utilises the memory bandwidth mostly for loading el-
ements of A and for storing the target array T. All arithmetic instructions are
double-precision FMAs except for the first element. Therefore, 8 Byte are loaded,
8 Byte stored and 17 Flop performed per lattice site. Hence, the AI is about
1 Flop/Byte. The kernel fdd-yz for the other two derivatives ∂yy and ∂zz con-
sists of update operations, i.e. we need to load the source array A and the target
array T before updating T, which increases the amount of data to be loaded by
50 % compared to fdd-Vx. Due to the missing central FD coefficient, we per-
form 8 FMAs per 24 Byte, i.e. an AI of 0.7. This is below the specifications of
the AMC with a ratio of at least 1 Flop/Byte, therefore, we expect this kernel to
be memory-bound. As an alternative to this load-update-store scheme, atomic
update operations can reduce the pressure on the memory interface.

6 Performance Analysis

The relevant performance metric for the investigate compute kernels is GFlop/s.
During the analysis, we define the floating-point efficiency εFP as the ratio of
achieved FP performance over the maximum of the AMC of 256 Flop/cycle or
320 GFlop/s when using all 32 lanes.

KKRnano The fully unrolled implementation of the double-precision C16×16-
matrix-matrix multiplication requires only 4886 AMC cycles to finish on a single
lane. This is equivalent to a floating-point efficiency εFP = 84 %. As this kernel

has a high theoretical arithmetic intensity (AI) (see Table 1), we expect it to be
compute bound. There are two potential causes for a lower effective performance.
First, the time required to setup the registers and read the corresponding values
from the stack memory. Second, the time overhead for offloading and returning
control to the CPU.

The data layout for the complex arrays was tuned to allow for load combines,
i.e. bundled memory requests of 16 or 32 Byte of data with adjacent memory
addresses. This reduces the total number of memory requests which is important
to sustain the performance also in multi-lane execution.

The resulting implementation is highly efficient, the instructions issued to
the four ALUs are almost exclusively FMAs (98%) and only very few slots re-
main empty (2%). About 600 cycles are spent to setup the kernel and preload
the initial values of the first matrix, A, which is then kept in the vector registers
during kernel execution. Values of B are streamed through the scalar registers in-
dividually. Accordingly, the kernel utilises the memory interface efficiently (LSU
instruction mix: 8% load, 5% store, 88% nop).

Most rows of H in KKRnano contain around 14 non-zero matrices. By in-
troducing an index list into the kernel that contains the start addresses of the
next pair of small matrices we can pipeline zgemm-16 and, hence, distribute the
start-up latency over the execution time for all elements in a row. Furthermore,
we could save the storing and loading of C increasing the AI to 3.5. Asymptot-
ically, we expect εFP ' 98 % for a fully pipelined implementation of the block
sparse matrix product, with a single kernel per row of 14 blocks.

We investigate the behaviour of the kernel when scaling to multiple processing
elements. Each is issuing a separate instance of the problem, simulating the
final implementation, where each lane concurrently computes one block of y and
traverses a row of block in H. Results of multi-lane experiments can be found in
Table 2. Here, excellent scaling is observed when increasing the number of active
lanes. The sustained performance on all 32 lanes of an AMC is 262 GFlop/s which
corresponds to εFP = 82 %. With more lanes working in parallel the number of
stall cycles relative to those spent on executing instructions grows significantly.
We suspect congestion on the memory system to be the cause. The effect was
larger for allocation strategies controlling the placement in memory vaults other
than the one used for these measurements. This indicates that the balancing of
the memory requests to the different vault controllers is a crucial compontent to
multi-lane efficiency. As each lane processes a disjoint problem set, the amount
of memory requests in flight increases proportionally puts more load on the
internal interconnect. We presented the optimal result from high level tuning of
the memory locality. While more fine grained control on the actual location of
memory allocations could alleviate the issue for elements of H, the access into
y is hard to optimise.

juRS The AI of the FD kernel fdd-Vx ranges in a field where small changes
in terms of requested memory traffic lead to a transition from being FP perfor-
mance limited to memory-bandwidth-bound, compare Table 1. Both fdd-kernels
process the grid in rows of the length of one of the domain dimensions. Each row

Table 2. Results for the execution of the juRS finite-difference derivative fdd-Vx and
KKRnano zgemm-16 kernels on L AMC lanes.

fdd-Vx 163 fdd-Vx 323 zgemm-16

L Cycles Stalls εFP Cycles Stalls εFP Cycles Stalls εFP GFlop/s

1 324 k 45 k 0.86 2.6 M 366 k 0.85 4886 682 0.83 8.4
2 186 k 47 k 0.74 1.4 M 293 k 0.79 4807 603 0.85 17.0
4 126 k 56 k 0.55 904 k 347 k 0.61 4893 689 0.83 33.5
8 63 k 28 k 0.55 454 k 176 k 0.61 4955 751 0.82 66.1
16 29 k 11 k 0.60 216 k 77 k 0.64 5007 803 0.81 130.9
32 20 k 11 k 0.43 160 k 90 k 0.43 4991 787 0.82 262.6

starts and ends with a halo region of four grid elements that need to be loaded
but do not exhibit an 8 or 9-fold data re-use as it is in the bulk of the row.
Therefore, shorter rows have a reduced average AI and, consequently, larger do-
main sizes lead to larger εFP. In addition to the halo-related overhead, the loads
experience congestion effects when executed on multiple lanes as shown in Ta-
ble 2 for fdd-Vx. Here, the number of lattice sites in one domain was 16×162 or
32×322 where the row length nx is 16 and 32, respectively. The number of rows
that are processed independently, 162 and 322, were distributed evenly among
the number of lanes. Taking the halo-related overhead into account, the corre-
sponding AIs are 0.84 and 0.93 Flop/Byte, respectively, compare Table 1. These
translate into a maximum efficiency that is achieved only on a single lane in the
smaller case. All multi-lane runs exhibit memory congestion effects that infer
additional stall cycles and, hence, lower the total FP efficiency. Nevertheless, a
sustained efficiency εFP = 43 % can be measured.

For the fdd-yz kernel, the amount of memory accesses can be reduced by one
third using the AtomicAdd instruction rather than a usual LoadStore scheme.
Then, the atomic store operation only sends the numerical difference to be added
to the content of the (64-bit) memory location. This allows to improve the single-
lane efficiency from εFP = 60 % to 80 % for a domain of 32× 32 grid points.

Application performance It is difficult to make predictions of the overall speed-
up of the juRS Hamiltonian action as the balance between the FD operations
and other kernels depends on the input. This includes the species of atoms, their
density, the grid spacing, and the required accuracy of the projector representa-
tion. All these can change significantly for different types of runs. Typically, the
application spends between 30 to 60 % in FD operations. However, on standard
CPU architectures we found the FP efficiency for these kernels to be typically
εFP . 10 %. For instance, on BG/Q [4] εFP could be as low as 2 %. For all
kernels, which we have ported to AMC, we observe an efficiency εFP ≥ 43 %.
We thus expect the execution for the juRS Hamiltonian to be at least 7× faster
on a single AMC device compared to a BG/Q processor, that features a peak
performance of 204.8 GFlop/s.

Table 3. Usage of
AMC hardware re-
sources and NOP-
metric for the mi-
crocode.

Kernel ALU-NOP LSU-NOP VLIW VectorReg.

fdd-Vx 163 89 % 216 (42 %) 6
fdd-yz 194 75 % 206 (40 %) 8
zgemm-16 78 88 % 398 (78 %) 16

As the fraction of the work executed within the kernels considered in this
paper reduces for larger Natom, we refrain from make predictions on the overall
application performance of juRS in the presence of AMC devices.

7 Discussion of AMC Architecture

For all kernels investigated here, the arithmetic intensities are high which results
in a good usage of the ALU pipeline. The implementations exhibit a constant
flow of arithmetic instructions inside the bulk of a kernel execution. Merely
during startup and finalisation some VLIWs are found that carry only LSU
instructions. Table 3 shows a measure of the NOP instructions. For example the
zgemm-16 kernel that runs 4886 cycles is implemented with only 1.6 % pure LSU
instructions for all slices. Also for the juRS-kernels the number of ALU-NOP
instructions is independent of the problem size. In contrast, the number of LSU-
NOP instructions is large and scales with the problem size, therefore, the fraction
of LSU-NOP instructions over possible LSU instruction slots is given here. The
largest usage of LSU instructions is 25 % found at fdd-yz in the LoadStore

scheme. Using the AtomicAdd scheme, this fraction is halfed.
The AMC architecture exhibits also other useful features for processing lin-

ear algebra tasks within DFT applications. Of particular interest are variants of
real and complex double-precision matrix-matrix multiplications where a com-
plete set of variants of multiply-add instructions, strong vectorisation and the
overlap of load latencies with computations allows to achieve high efficiencies
for sparse operator arithmetics. For the investigated kernels, 32 elements in each
vector and four slices per lane can be employed to a full extent. In all kernels,
load latencies are hidden by unrolling loops and the possibility to issue load or
store instructions in the same cycle with arithmetic operations allows to run at
floating-point efficiencies close to 100 % given that the AI is sufficiently high.
The manually assembled micro-code implementations of the kernels make use
of most of the 32 scalar registers per slice. The number of used vector registers
per slice and the filling of the instruction buffer are listed in the right columns
of Table 3 for the different kernels. Only for the zgemm-16 kernel all 16 vector
registers have been used. The latter indicates that the size of the register file
is suitable for these application kernels. Despite completely unrolled loops in
zgemm-16 the instruction buffer with up to 512 VLIWs is large enough to host
the instructions for the investigated operations without reloading.

All kernels make extensive use of overlapping load latencies with computa-
tions. When scheduling the loads in the sequence of VLIWs we have to balance
between too early which would stall the lane due to overfilling of the load queue
and too late which leads to stall cycles waiting for data to arrive. A shorter load

queue than 192 items is expected to increase the pressure on this trade-off and
the dependence of the total runtime on memory congestion effects.

8 Related Work

Over the last years numerous DFT simulation codes have been developed for
high-end HPC systems. For some of these codes performance analysis results for
different architectures have been published. The authors of [2, 4] focus on the
performance of the CP2K and juRS codes on the Blue Gene architecture. An
overview of performance evaluations for Quantum Espresso on different high-
end HPC systems is given in [10]. Recently, there has been increased interest in
exploiting massively-parallel compute devices like GPUs for this type of appli-
cations [9, 11, 24, 21, 12, 20].

Extensive research on PIM architectures has been performed in the 90s result-
ing in various architectures being proposed and explored, including Computa-
tional RAM [7], Intelligent RAM [19], DIVA [13], Gilgamesh [22], and FlexRAM
[16]. Recently, a reviving interest can be observed (see, e.g., [18, 1]). Different
application kernels have been mapped to these architectures to explore their per-
formance, with focus on kernels that feature irregular memory access patterns.
Similar to the approach taken for this work, we analysed the relevant kernels of
a fluid dynamics code using the Lattice Boltzmann method and the Dirac op-
erator from a Lattice Quantum Chromodynamics application and implemented
these for the AMC architecture [3].

9 Conclusions

By porting relevant kernels of high-scalable density functional theory applica-
tions to the Active Memory Cube (AMC) we could demonstrate the potential
of this architecture to be efficiently used for such scientific applications, where
regular linear algebra and stencil operations dominate.

In particular, matrix-matrix multiplications can be executed efficiently even
if it involves many tasks with small matrix dimensions. Using a suitable data
layout for complex numbers a floating-point efficiency εFP & 80 % could be
achieved, which is significantly above the efficiency of about 15 % observed on
Blue Gene/QTM for the same kernel. When using KKRnano in its linear scaling
mode with 2229 atoms in the interaction region on BG/Q, about 91 % of the
time is spent in this kernel. Therefore, a single AMC has the potential to speed-
up the overall application by a factor 5, while a single AMC is expected to
consume about 5 times less power compared to a BG/Q processor. For this
energy efficiency assessment the power consumed by the CPU is, however, not
taken into account.

In addition to variants of matrix-matrix operations, we investigated a stencil
operation that arises from 3D finite-difference derivatives and can be mapped
to 1D stencils. Here, a floating-point efficiency εFP = 43 % could be measured.

A speed-up of the juRS Hamiltonian depends on the balance between finite-
difference kernel and other tasks, which in return depend on several input quan-
tities. Thus a typical overall speed-up of the application is difficult to assess.

For any of the relevant kernels we observed a floating-point efficiency εFP >
40 %, which corresponds to a double-precision floating-point performance of at
least 128 GFlop/s within an estimated power-envelope of 10 W. In particular
the implementation of matrix-matrix multiplications with εFP ' 80 % translates
into 25 GFlop/s per Watt. This significantly exceeds power efficiencies on current
architectures, it takes, however, only the power consumed by the AMC into
account.

In regard of the hand-written microcode implementations generated for this
investigation it remains unclear if compilers (once fully functional) will achieve
similar performance numbers.

Acknowledgments

We thank the AMC team at IBM Research, in particular Jaime Moreno, for shar-
ing their knowledge on the AMC, continued help and many fruitful discussions.
We also acknowledge the collaboration of Stefan Blügel and his group.

References

1. Junwhan Ahn et al. PIM-enabled instructions. In ISCA ’15 Proceedings, page 336.
2. S. Alam, C. Bekas, H. Boettiger, et al. IBM J. Res. Dev., 57(1):161–169, Jan 2013.
3. P. F. Baumeister, H. Boettiger, J. R. Brunheroto, T. Hater, T. Maurer, A. Nobile,

and D. Pleiter. In High Performance Computing, volume 9137 of LNCS. 2015.
4. Paul F. Baumeister. PhD thesis, RWTH Aachen University, 2012.
5. A. D. Becke. J. Chem. Phys., 140(18), 2014 and references therein.
6. S. Blügel, D. Wortmann, et al. EIC Co-design Questionnaire for DFT. unpublished.
7. D. G. Elliott et al. Computational RAM. In Proceedings IEEE 1992, page 30.6.1.
8. R. W. Freund and N. Nachtigal. QMR. Numerische Mathematik, 60(1):315, 1991.
9. L. Genovese, M. Ospici, T. Deutsch, et al. J. Chem. Phys., 131(3), 2009.

10. I. Girotto et al. Enabling of Quantum ESPRESSO ... PRACE, 2012.
11. M. Hacene et al. Accelerating VASP. J. Comp. Chem., 33(32):2581–2589, 2012.
12. S. Hakala et al. volume 7782 of LNCS, pages 63–76. Springer, 2013.
13. M. Hall et al. Mapping irregular applications to DIVA. In SC ’99 Conf., page 57.
14. Hybrid Memory Cube Consortium. Hybrid Memory Cube specification, 2013.
15. JEDEC. JEDEC Standard High Bandwidth Memory(HBM) DRAM Spec., 2013.
16. Yi Kang, Wei Huang, et al. FlexRAM. In ICCD ’99 Conf., pages 192–201.
17. S. Kümmel and L. Kronik. Rev. Mod. Phys., 80:3–60, Jan 2008.
18. R. Nair, S.F. Antao, et al. IBM J. Res. Dev., 59(2/3):17:1–17:14, Mar 2015.
19. D. Patterson et al. A case for intelligent RAM. Micro, IEEE, 17(2), Mar 1997.
20. R. Solcà, A. Kozhevnikov, et al. In SC ’15 Proceedings, pages 10:1–10:12.
21. F. Spiga and I. Girotto. phiGEMM. In Euromicro 2012 Proceedings, page 368.
22. T. L. Sterling and H. P. Zima. Gilgamesh. In SC ’02 Proceedings, page 48.
23. A. Thiess, R. Zeller, et al. KKRnano. Phys. Rev. B, 85:235103, Jun 2012.
24. L. Wang, Yue Wu, Weile Jia, et al. In SC ’11 Proceedings, pages 71:1–71:10.
25. R. Zeller. KKRnano. VSR Seminar (Oct 2014), JSC, FZ Jülich(Germany), 2014.
26. R. Zeller et al. Phys. Rev. B, 52:8807–8812, Sep 1995.

