000834092 001__ 834092
000834092 005__ 20240313103126.0
000834092 0247_ $$2doi$$a10.1371/journal.pcbi.1005534
000834092 0247_ $$2ISSN$$a1553-734X
000834092 0247_ $$2ISSN$$a1553-7358
000834092 0247_ $$2Handle$$a2128/15053
000834092 0247_ $$2WOS$$aWOS:000404565400013
000834092 0247_ $$2altmetric$$aaltmetric:10107219
000834092 0247_ $$2pmid$$apmid:28604771
000834092 037__ $$aFZJ-2017-04093
000834092 041__ $$aEnglish
000834092 082__ $$a570
000834092 1001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b0$$ufzj
000834092 245__ $$aLocking of correlated neural activity to ongoing oscillations
000834092 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2017
000834092 3367_ $$2DRIVER$$aarticle
000834092 3367_ $$2DataCite$$aOutput Types/Journal article
000834092 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501585076_13623
000834092 3367_ $$2BibTeX$$aARTICLE
000834092 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834092 3367_ $$00$$2EndNote$$aJournal Article
000834092 520__ $$aPopulation-wide oscillations are ubiquitously observed in mesoscopic signals of cortical activity. In these network states a global oscillatory cycle modulates the propensity of neurons to fire. Synchronous activation of neurons has been hypothesized to be a separate channel of signal processing information in the brain. A salient question is therefore if and how oscillations interact with spike synchrony and in how far these channels can be considered separate. Experiments indeed showed that correlated spiking co-modulates with the static firing rate and is also tightly locked to the phase of beta-oscillations. While the dependence of correlations on the mean rate is well understood in feed-forward networks, it remains unclear why and by which mechanisms correlations tightly lock to an oscillatory cycle. We here demonstrate that such correlated activation of pairs of neurons is qualitatively explained by periodically-driven random networks. We identify the mechanisms by which covariances depend on a driving periodic stimulus. Mean-field theory combined with linear response theory yields closed-form expressions for the cyclostationary mean activities and pairwise zero-time-lag covariances of binary recurrent random networks. Two distinct mechanisms cause time-dependent covariances: the modulation of the susceptibility of single neurons (via the external input and network feedback) and the time-varying variances of single unit activities. For some parameters, the effectively inhibitory recurrent feedback leads to resonant covariances even if mean activities show non-resonant behavior. Our analytical results open the question of time-modulated synchronous activity to a quantitative analysis.
000834092 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000834092 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x1
000834092 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x2
000834092 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x3
000834092 536__ $$0G:(DE-HGF)HGF-YoungInvestigatorsGroup$$aHelmholtz Young Investigators Group (HGF-YoungInvestigatorsGroup)$$cHGF-YoungInvestigatorsGroup$$x4
000834092 588__ $$aDataset connected to CrossRef
000834092 7001_ $$0P:(DE-Juel1)164473$$aKühn, Tobias$$b1$$eCorresponding author$$ufzj
000834092 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1005534$$gVol. 13, no. 6, p. e1005534 -$$n6$$pe1005534 $$tPLoS Computational Biology$$v13$$x1553-7358$$y2017
000834092 8564_ $$uhttps://juser.fz-juelich.de/record/834092/files/journal.pcbi.1005534.pdf$$yOpenAccess
000834092 8564_ $$uhttps://juser.fz-juelich.de/record/834092/files/journal.pcbi.1005534.gif?subformat=icon$$xicon$$yOpenAccess
000834092 8564_ $$uhttps://juser.fz-juelich.de/record/834092/files/journal.pcbi.1005534.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834092 8564_ $$uhttps://juser.fz-juelich.de/record/834092/files/journal.pcbi.1005534.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834092 8564_ $$uhttps://juser.fz-juelich.de/record/834092/files/journal.pcbi.1005534.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834092 8564_ $$uhttps://juser.fz-juelich.de/record/834092/files/journal.pcbi.1005534.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834092 8767_ $$8PAB200034$$92017-06-13$$d2017-06-13$$eAPC$$jDeposit$$lDeposit: PLoS$$pPBIOLOGY-990568$$zUSD 2250
000834092 909CO $$ooai:juser.fz-juelich.de:834092$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000834092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b0$$kFZJ
000834092 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164473$$aForschungszentrum Jülich$$b1$$kFZJ
000834092 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000834092 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x1
000834092 9141_ $$y2017
000834092 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834092 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000834092 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000834092 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834092 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2015
000834092 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000834092 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000834092 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834092 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834092 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834092 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834092 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834092 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000834092 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834092 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834092 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000834092 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lTheoretical Neuroscience$$x1
000834092 9201_ $$0I:(DE-Juel1)INM-10-20170113$$kINM-10$$lJara-Institut Brain structure-function relationships$$x2
000834092 9801_ $$aAPC
000834092 9801_ $$aFullTexts
000834092 980__ $$ajournal
000834092 980__ $$aVDB
000834092 980__ $$aUNRESTRICTED
000834092 980__ $$aI:(DE-Juel1)INM-6-20090406
000834092 980__ $$aI:(DE-Juel1)IAS-6-20130828
000834092 980__ $$aI:(DE-Juel1)INM-10-20170113
000834092 980__ $$aAPC
000834092 981__ $$aI:(DE-Juel1)IAS-6-20130828