001     834093
005     20210129230537.0
020 _ _ |a 978-3-319-58942-8 (print)
020 _ _ |a 978-3-319-58943-5 (electronic)
024 7 _ |a 10.1007/978-3-319-58943-5_39
|2 doi
024 7 _ |a 0302-9743
|2 ISSN
024 7 _ |a 1611-3349
|2 ISSN
024 7 _ |a WOS:000529303100039
|2 WOS
037 _ _ |a FZJ-2017-04094
082 _ _ |a 004
100 1 _ |a Grunzke, Richard
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a European Conference on Parallel Processing
|g Euro-Par
|c Grenoble
|d 2016-08-24 - 2016-08-26
|w France
245 _ _ |a Seamless HPC Integration of Data-Intensive KNIME Workflows via UNICORE
260 _ _ |a Cham
|c 2017
|b Springer International Publishing
295 1 0 |a Euro-Par 2016: Parallel Processing Workshops / Desprez, Frederic (Editor) ; Cham : Springer International Publishing, 2017, Chapter 39 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-319-58942-8=978-3-319-58943-5 ; doi:10.1007/978-3-319-58943-5
300 _ _ |a 480 - 491
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1497351603_20558
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 10104
520 _ _ |a Biological research is increasingly dependent on analyzing vast amounts of microscopy datasets. Technologies such as Fiji/ImageJ2 and KNIME support knowledge extraction from biological data by providing a large set of configurable algorithms and an intuitive pipeline creation and execution interface. The increasing complexity of required analysis pipelines and the growing amounts of data to be processed nurture the desire to run existing pipelines on HPC (High Performance Computing) systems. Here, we propose a solution to this challenge by presenting a new HPC integration method for KNIME (Konstanz Information Miner) using the UNICORE middleware (Uniform Interface to Computing Resources) and its automated data processing feature. We designed the integration to be efficient in processing large data workloads on the server side. On the client side it is seamless and lightweight to only minimally increase the complexity for the users. We describe our novel approach and evaluate it using an image processing pipeline that could previously not be executed on an HPC system. The evaluation includes a performance study of the induced overhead of the submission process and of the integrated image processing pipeline based on a large amount of data. This demonstrates how our solution enables scientists to transparently benefit from vast HPC resources without the need to migrate existing algorithms and pipelines.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
700 1 _ |a Jug, Florian
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Schuller, Bernd
|0 P:(DE-Juel1)132261
|b 2
700 1 _ |a Jäkel, Rene
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Myers, Gene
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nagel, Wolfgang E.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1007/978-3-319-58943-5_39
909 C O |o oai:juser.fz-juelich.de:834093
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132261
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21