000834097 001__ 834097
000834097 005__ 20240712113055.0
000834097 0247_ $$2doi$$a10.1016/j.ssi.2016.11.006
000834097 0247_ $$2ISSN$$a0167-2738
000834097 0247_ $$2ISSN$$a1872-7689
000834097 0247_ $$2WOS$$aWOS:000397688300020
000834097 037__ $$aFZJ-2017-04098
000834097 082__ $$a530
000834097 1001_ $$0P:(DE-Juel1)158083$$aGuin, Marie$$b0$$eCorresponding author$$ufzj
000834097 245__ $$aStability of NASICON materials against water and CO 2 uptake
000834097 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000834097 3367_ $$2DRIVER$$aarticle
000834097 3367_ $$2DataCite$$aOutput Types/Journal article
000834097 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1498569976_10911
000834097 3367_ $$2BibTeX$$aARTICLE
000834097 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834097 3367_ $$00$$2EndNote$$aJournal Article
000834097 520__ $$aThe stability in ambient conditions of a scandium-based NASICON material, Na3.4Sc2Si0.4P2.6O12, was investigated using impedance spectroscopy, thermogravimetry/differential scanning calorimetry (TG/DSC) and multinuclear magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The presence of H2O and CO2 in samples stored in ambient air could be evidenced as well as its impact on the ionic conductivity of the samples.The detected amounts of water and CO2 in the samples had no influence on the measured conductivities at room temperature, which confirmed the absence of protonic conduction in hydrated samples. A loss of conductivity during heating of hydrated samples was due to a loss of contact between the ceramic and the electrode used for the conductivity measurement.The recommendation for handling of NASICON-type materials is therefore: samples require storage in an Ar-filled glove box or in a dry environment to avoid artefacts during high temperature measurements. Nevertheless, the stability of the NASICON-type materials is confirmed since their conductivity is not affected by the moisture.
000834097 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000834097 588__ $$aDataset connected to CrossRef
000834097 7001_ $$0P:(DE-HGF)0$$aIndris, S.$$b1
000834097 7001_ $$0P:(DE-HGF)0$$aKaus, M.$$b2
000834097 7001_ $$0P:(DE-HGF)0$$aEhrenberg, H.$$b3
000834097 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b4$$ufzj
000834097 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b5$$ufzj
000834097 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2016.11.006$$gVol. 302, p. 102 - 106$$p102 - 106$$tSolid state ionics$$v302$$x0167-2738$$y2017
000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.pdf$$yRestricted
000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.gif?subformat=icon$$xicon$$yRestricted
000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834097 909CO $$ooai:juser.fz-juelich.de:834097$$pVDB
000834097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158083$$aForschungszentrum Jülich$$b0$$kFZJ
000834097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b4$$kFZJ
000834097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000834097 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000834097 9141_ $$y2017
000834097 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000834097 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2015
000834097 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834097 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834097 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834097 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834097 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834097 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834097 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834097 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834097 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834097 920__ $$lyes
000834097 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000834097 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000834097 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2
000834097 980__ $$ajournal
000834097 980__ $$aVDB
000834097 980__ $$aI:(DE-Juel1)IEK-1-20101013
000834097 980__ $$aI:(DE-Juel1)IEK-12-20141217
000834097 980__ $$aI:(DE-82)080011_20140620
000834097 980__ $$aUNRESTRICTED
000834097 981__ $$aI:(DE-Juel1)IMD-4-20141217
000834097 981__ $$aI:(DE-Juel1)IMD-2-20101013