000834097 001__ 834097 000834097 005__ 20240712113055.0 000834097 0247_ $$2doi$$a10.1016/j.ssi.2016.11.006 000834097 0247_ $$2ISSN$$a0167-2738 000834097 0247_ $$2ISSN$$a1872-7689 000834097 0247_ $$2WOS$$aWOS:000397688300020 000834097 037__ $$aFZJ-2017-04098 000834097 082__ $$a530 000834097 1001_ $$0P:(DE-Juel1)158083$$aGuin, Marie$$b0$$eCorresponding author$$ufzj 000834097 245__ $$aStability of NASICON materials against water and CO 2 uptake 000834097 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017 000834097 3367_ $$2DRIVER$$aarticle 000834097 3367_ $$2DataCite$$aOutput Types/Journal article 000834097 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1498569976_10911 000834097 3367_ $$2BibTeX$$aARTICLE 000834097 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000834097 3367_ $$00$$2EndNote$$aJournal Article 000834097 520__ $$aThe stability in ambient conditions of a scandium-based NASICON material, Na3.4Sc2Si0.4P2.6O12, was investigated using impedance spectroscopy, thermogravimetry/differential scanning calorimetry (TG/DSC) and multinuclear magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The presence of H2O and CO2 in samples stored in ambient air could be evidenced as well as its impact on the ionic conductivity of the samples.The detected amounts of water and CO2 in the samples had no influence on the measured conductivities at room temperature, which confirmed the absence of protonic conduction in hydrated samples. A loss of conductivity during heating of hydrated samples was due to a loss of contact between the ceramic and the electrode used for the conductivity measurement.The recommendation for handling of NASICON-type materials is therefore: samples require storage in an Ar-filled glove box or in a dry environment to avoid artefacts during high temperature measurements. Nevertheless, the stability of the NASICON-type materials is confirmed since their conductivity is not affected by the moisture. 000834097 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000834097 588__ $$aDataset connected to CrossRef 000834097 7001_ $$0P:(DE-HGF)0$$aIndris, S.$$b1 000834097 7001_ $$0P:(DE-HGF)0$$aKaus, M.$$b2 000834097 7001_ $$0P:(DE-HGF)0$$aEhrenberg, H.$$b3 000834097 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b4$$ufzj 000834097 7001_ $$0P:(DE-Juel1)161591$$aGuillon, O.$$b5$$ufzj 000834097 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2016.11.006$$gVol. 302, p. 102 - 106$$p102 - 106$$tSolid state ionics$$v302$$x0167-2738$$y2017 000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.pdf$$yRestricted 000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.gif?subformat=icon$$xicon$$yRestricted 000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000834097 8564_ $$uhttps://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000834097 909CO $$ooai:juser.fz-juelich.de:834097$$pVDB 000834097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158083$$aForschungszentrum Jülich$$b0$$kFZJ 000834097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich$$b4$$kFZJ 000834097 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ 000834097 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000834097 9141_ $$y2017 000834097 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000834097 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2015 000834097 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000834097 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000834097 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000834097 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000834097 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000834097 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000834097 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000834097 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000834097 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000834097 920__ $$lyes 000834097 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000834097 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1 000834097 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x2 000834097 980__ $$ajournal 000834097 980__ $$aVDB 000834097 980__ $$aI:(DE-Juel1)IEK-1-20101013 000834097 980__ $$aI:(DE-Juel1)IEK-12-20141217 000834097 980__ $$aI:(DE-82)080011_20140620 000834097 980__ $$aUNRESTRICTED 000834097 981__ $$aI:(DE-Juel1)IMD-4-20141217 000834097 981__ $$aI:(DE-Juel1)IMD-2-20101013