001     834097
005     20240712113055.0
024 7 _ |a 10.1016/j.ssi.2016.11.006
|2 doi
024 7 _ |a 0167-2738
|2 ISSN
024 7 _ |a 1872-7689
|2 ISSN
024 7 _ |a WOS:000397688300020
|2 WOS
037 _ _ |a FZJ-2017-04098
082 _ _ |a 530
100 1 _ |a Guin, Marie
|0 P:(DE-Juel1)158083
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Stability of NASICON materials against water and CO 2 uptake
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1498569976_10911
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The stability in ambient conditions of a scandium-based NASICON material, Na3.4Sc2Si0.4P2.6O12, was investigated using impedance spectroscopy, thermogravimetry/differential scanning calorimetry (TG/DSC) and multinuclear magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The presence of H2O and CO2 in samples stored in ambient air could be evidenced as well as its impact on the ionic conductivity of the samples.The detected amounts of water and CO2 in the samples had no influence on the measured conductivities at room temperature, which confirmed the absence of protonic conduction in hydrated samples. A loss of conductivity during heating of hydrated samples was due to a loss of contact between the ceramic and the electrode used for the conductivity measurement.The recommendation for handling of NASICON-type materials is therefore: samples require storage in an Ar-filled glove box or in a dry environment to avoid artefacts during high temperature measurements. Nevertheless, the stability of the NASICON-type materials is confirmed since their conductivity is not affected by the moisture.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Indris, S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kaus, M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ehrenberg, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tietz, F.
|0 P:(DE-Juel1)129667
|b 4
|u fzj
700 1 _ |a Guillon, O.
|0 P:(DE-Juel1)161591
|b 5
|u fzj
773 _ _ |a 10.1016/j.ssi.2016.11.006
|g Vol. 302, p. 102 - 106
|0 PERI:(DE-600)1500750-9
|p 102 - 106
|t Solid state ionics
|v 302
|y 2017
|x 0167-2738
856 4 _ |u https://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834097/files/1-s2.0-S0167273816304568-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834097
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE IONICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21