001     834098
005     20240712113055.0
024 7 _ |a 10.1016/j.ssi.2016.11.004
|2 doi
024 7 _ |a 0167-2738
|2 ISSN
024 7 _ |a 1872-7689
|2 ISSN
024 7 _ |a WOS:000397688300017
|2 WOS
037 _ _ |a FZJ-2017-04099
082 _ _ |a 530
100 1 _ |a Naqash, Sahir
|0 P:(DE-Juel1)165865
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Na3Zr2(SiO4)2(PO4) prepared by a solution-assisted solid state reaction
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1498570055_11259
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The Na+ super-ionic conductor Na3Zr2(SiO4)2(PO4), known as the original NASICON material, is a promising solid-state electrolyte that can be used for sodium batteries. A solution-assisted solid state reaction (SA-SSR) method has been developed for its synthesis. The method is convenient, low-cost, and has potential for large scale production. The total conductivity of the sample synthesized by SA-SSR is 1 × 10− 3 S cm− 1 at 25 °C, which is one of the highest reported data of this composition after conventional processing of the ceramic powder. To rationalize the advantages of the method, a comparison of powders and ceramics prepared by the Pechini and SA-SSR methods was carried out. Scanning electron microscopy, X-ray diffraction and impedance spectroscopy were used to investigate the products of both synthesis routes and the possible reasons of the high quality of SA-SSR samples are discussed.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ma, Qianli
|0 P:(DE-Juel1)129628
|b 1
|u fzj
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 2
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 3
|u fzj
773 _ _ |a 10.1016/j.ssi.2016.11.004
|g Vol. 302, p. 83 - 91
|0 PERI:(DE-600)1500750-9
|p 83 - 91
|t Solid state ionics
|v 302
|y 2017
|x 0167-2738
856 4 _ |u https://juser.fz-juelich.de/record/834098/files/1-s2.0-S0167273816304805-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834098/files/1-s2.0-S0167273816304805-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834098/files/1-s2.0-S0167273816304805-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834098/files/1-s2.0-S0167273816304805-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834098/files/1-s2.0-S0167273816304805-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834098/files/1-s2.0-S0167273816304805-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834098
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165865
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129628
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE IONICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21