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Abstract

Purpose Despite the excellent capacity of the conventional

MRI to image brain tumours, problems remain in answer-

ing a number of critical diagnostic questions. To overcome

these diagnostic shortcomings, PET using radiolabeled

amino acids and perfusion-weighted imaging (PWI) are

currently under clinical evaluation. The role of amino acid

PET and PWI in different diagnostic challenges in brain

tumours is controversial.

Methods Based on the literature and experience of our

centres in correlative imaging with PWI and PET using O-

(2-[18F]fluoroethyl)-L-tyrosine or 3,4-dihydroxy-6-[18F]-

fluoro-L-phenylalanine, the current role and shortcomings

of amino acid PET and PWI in different diagnostic chal-

lenges in brain tumours are reviewed. Literature searches

were performed on PubMed, and additional literature was

retrieved from the reference lists of identified articles. In

particular, all studies in which amino acid PET was directly

compared with PWI were included.

Results PWI is more readily available, but requires sub-

stantial expertise and ismore sensitive to artifacts than amino

acid PET. At initial diagnosis, PWI and amino acid PET can

help to define a site for biopsy but amino acid PET appears to

be more powerful to define the tumor extent. Both methods

are helpful to differentiate progression or recurrence from

unspecific posttherapeutic changes. Assessment of thera-

peutic efficacy can be achieved especially with amino acid

PET, while the data with PWI are sparse.

Conclusion Both PWI and amino acid PET add valuable

diagnostic information to the conventional MRI in the

assessment of patients with brain tumours, but further

studies are necessary to explore the complementary nature

of these two methods.

Keywords Amino acid PET �
18F-FET �

18F-FDOPA �

Perfusion-weighted MRI � Relative cerebral blood volume

(rCBV) � Brain tumours

Introduction

Cerebral gliomas arising from different brain tissue types

are the most prevalent primary brain tumours with an

incidence of 5–6 in 100,000, apart from meningiomas [1].

Metastases in the brain originating from various peripheral

tumours are even more frequent tumours with an incidence

of 8-14/100.000 [2]. Histologically, gliomas are subdi-

vided into astrocytomas, oligodendrogliomas, ependymal
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tumours, and tumours of the choroids plexus. The classi-

fication of gliomas by the World Health Organization

(WHO) has been updated recently, combining now

molecular parameters, such as IDH mutation and 1p/19q

co-deletion with histology [3].

During the diagnostic process of brain lesions, it may be

crucial to differentiate brain tumours from benign lesions,

such as demyelination, hematoma, abscesses, and infarc-

tions which may appear similar on MRI. MRI is at present

the standard neuroimaging modality [4] owing to its

excellent soft-tissue contrast and spatial resolution. The

standard MRI for diagnostic imaging in brain tumours is

based on pre- and postcontrast T1-weighted images and

T2-weighted images, including fluid-attenuated inversion

recovery (FLAIR) images. However, there are limitations

in the standard MRI with regard to differentiating tumour

tissue from nonspecific changes, which is especially rele-

vant after therapy.

With positron emission tomography (PET), different

radioactively labelled tracers are injected to target various

metabolic and molecular pathways. This may add impor-

tant information especially in clinically challenging situa-

tions to improve diagnosis and therapy planning. Over the

past decades, PET with radiolabelled amino acids has

become a highly relevant diagnostic tool. Recent joint

recommendations of the Response Assessment in Neuro-

Oncology working group (RANO) and the European

Association for Neuro-Oncology (EANO) consider amino

acid PET as clinically helpful and suggest its use for

managing patients with brain tumours additionally to MRI

[5]. Meanwhile, advanced MRI methods, such as perfu-

sion-weighted imaging (PWI), are being evaluated in the

clinical setting and can provide complementary patho-

physiological information to the standard MRI. Based on

the experience of our centres in correlative imaging with

PWI and PET using O-(2-[18F]fluoroethyl)-L-tyrosine

(FET) or 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine

(FDOPA) in more than 500 brain tumour patients, this

review focuses on the clinical impact of amino acid PET

and PWI in adult patients during the workup of brain

tumours. Literature searches were performed on PubMed

using the search terms ‘‘brain tumours’’, ‘‘gliomas’’

‘‘positron emission tomography’’, ‘‘magnetic resonance

imaging’’, ‘‘Amino acids’’, ‘‘methionine’’, ‘‘FET,

‘‘FDOPA’’, ‘‘perfusion imaging’’, ‘‘PET’’, and ‘‘rCBV’’.

Additional literature was retrieved from the reference lists

of identified articles. Only papers in the English language

published until the end of 2016 were selected for review.

The references cited in the review were selected by the

authors with respect to the scientific quality, with prefer-

ence to more recent publications, and relevance of the

papers in the field according to the personal experience of

the authors. In particular, all studies were included in

which amino acid PET was directly compared with PWI.

These studies are summarized in Table 1. The performance

of amino acid PET and PWI is discussed with respect to

differential diagnosis of brain lesions, tumor delineation

and biopsy guidance as well as therapy monitoring and

discrimination between tumour progression or recurrence

and treatment-related changes.

PET using radiolabelled amino acids

Amino acids present several advantages over 18F-2-fluoro-

2-deoxy-D-glucose (FDG) and are now regarded as the

tracers of choice for PET imaging of brain tumours [6].

The first radiopharmaceutical of this class to be used

clinically was 11C-methyl-L-methionine (MET), an iso-

topically labelled methionine made from 11CH3-I alkyla-

tion of homocysteine [7]. Data on the clinical usefulness of

MET in brain tumours have been collected for more than

30 years; however, due to the short half-life of 11C

(20 min), which limits the use of MET to centres equipped

with an onsite cyclotron, the interest around fluorinated

compounds has grown significantly in the recent past. The

two most popular amino acid PET radiopharmaceuticals

labelled with 18F (109.8 min half-life) are O-(2-[18F]fluo-

roethyl)-L-tyrosine (FET) and 3,4-dihydroxy-6-[18F]-flu-

oro-L-phenylalanine (FDOPA). FET is a tyrosine

derivative, which is synthesized with high yield by a two-

step fluoroethylation of tyrosine [8]. FDOPA is an ana-

logue of the non-proteinogenic amino acid L-DOPA, which

has historically been synthesized via electrophilic substi-

tution. However, because of isomeric impurities, low

specific activity, low radiochemical yield, and precursor

toxicity, this process has been later abandoned for nucle-

ophilic substitution [9, 10]. The molecular structures of the

abovementioned synthetic amino acids are shown in Fig. 1.

With the exception of MET, these radiolabelled amino

acids are not incorporated into proteins [11]; nevertheless,

their uptake mechanisms are highly efficient, leading to very

favourable tumour-to-background ratios. The uptake of

radiolabelled amino acids is based on the expression of the

Na?-independent large neutral amino acid transporters on

the cell surface of tumour cells, namely, LAT1 and LAT2.

This mechanism is independent from blood–brain barrier

permeability; therefore, amino acid probes are able to depict

non contrast-enhancing brain tumour regions, which are a

clear advantage over other PET tracers, such as 30-deoxy-30-

[18F]fluorothymidine (FLT) [12] and 18F-Fluorocholine

(FCH) [13]. MET and FDOPA uptakes are thought to be

largely due to LAT1 [14, 15], while FET is transported by

both LAT1 and LAT2 [16]. A recent study showed that the

retention of FET into cells is due to an asymmetric intra- and

extracellular recognition of LAT1, with consequent poor

efflux from the cell back to the extracellular space [17].
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No relevant differences between available radiolabelled

amino acids have been shown in terms of tumor to brain

contrast [18–21]. However, some differences exist with

regard to tracer biodistribution in the brain and the time-

activity curves of tracer uptake. FDOPA is a substrate for

the enzyme aromatic amino acid decarboxylase in

dopaminergic neurons [22]; this is responsible for FDOPA

prominent uptake by the basal ganglia which might inter-

fere with tumour delineation [23]. In addition, available

data suggest that FET kinetics may add additional biolog-

ical information, which may be helpful for glioma grading

[24, 25], the differentiation of both glioma and brain

metastasis recurrence from radiation-induced changes

[26–28] or the prognostication of untreated gliomas

[29, 30]. Although amino acid PET shows high accuracy

for the detection of brain tumours [31], tracer uptake in

non-neoplastic brain lesions has to be taken into account.

Thus, unspecific amino acid uptake in the brain has been

reported in multiple sclerosis and other inflammatory

lesions, vascular malformations, ischemic lesions, hema-

tomas, etc [32–36]. Moreover, amino acid PET may be

negative in a significant proportion of low-grade gliomas

[37, 38].

MRI and MR perfusion imaging

MRI is the method of choice for anatomical imaging in

patients suspicious for brain tumours as well as during the

course of therapy in brain tumour patients due to its

excellent soft-tissue characterization, high resolution, and

easy multiplanar reconstruction. The standard MRI includes

pre- and postcontrast T1-weighted sequences as well as T2-

weighted sequences possibly with FLAIR sequences

[4, 39–41]. MRI has a high sensitivity to detect brain lesions

due to its excellent soft-tissue contrast, but hyperintense

signal in T2-weighted images may also be caused by peri-

tumoural oedema. In tumours with diffuse cell infiltration, a

clear demarcation of tumour from peritumoural changes

may not be possible. In contrast, enhancement in T1-

weighted images indicates a disruption of the blood–brain

barrier (BBB) and is typical but not specific for malignant

tumours. Particularly, treatment-related changes after sur-

gery, radio-, or chemotherapy of brain tumours may also

cause contrast enhancement and be challenging to differ-

entiate from tumour recurrence [4, 42, 43].

PWI is an advanced MRI method which provides infor-

mation on brain hemodynamics in addition to the

Table 1 Studies comparing amino acid PET and PWI

First author and year Patient group PET

tracer

No of

patients

Results

Berntsson 2013 [83] Untreated low grade

glioma

MET 24 Spatial overlap of MET hotspots and PWI max but no correlation of

rCBV and MET uptake

Cicone 2015 [23] Recurrent/progressive

glioma

FDOPA 44 Higher tumor to brain contrast in FDOPA PET and larger tumor

volumes than in rCBV maps, poor spatial congruence of FDOPA

and rCBV

Cicone 2015 [147] Recurrent metastasis

versus radionecrosis

FDOPA 42 Better performance of FDOPA PET than rCBV in differentiating

recurrent metastasis from radionecrosis

Dandois 2010 [140] Recurrent glioma versus

radionecrosis

MET 28 Equal performance of rCBV and MET PET in differentiation of tumor

recurrence versus radionecrosis

D’souza 2014 [133] Recurrent glioma versus

radionecrosis

MET 29 rCBV and MET uptake equally useful to differentiate recurrence

versus radionecrosis

Filss 2014 [79] Primary and recurrent

gliomas

FET 56 Higher tumor to brain contrast in FET PET and larger tumor volumes

than in rCBV maps, poor spatial congruence of FET and rCBV

Henriksen 2016 [80] Pretreated gliomas FET 41 Higher tumor to brain contrast in FET PET and larger tumor volumes

than in rCBV maps, poor spatial congruence of FET and rCBV

Kim 2010 [141] Recurrent glioma versus

radionecrosis

MET 10 Equal performance of rCBV and MET PET in differentiation of tumor

recurrence versus radionecrosis

Rossi Espagnet 2016

[118]

Pretreated low grade

gliomas

FDOPA 12 No correlation of rCBV and FDOPA uptake

Sadeghi 2006 [78] Primary and recurrent

gliomas

MET 18 rCBV and MET uptake strongly correlated

Sadeghi 2007 [77] Primary and recurrent

gliomas

MET 14 rCBV and MET equivalent in the assessment of tumor infiltration

Tietze 2015 [82] Untreated gliomas MET 13 rCBV helpful in HGG but not useful in LGG in contrast to MET PET

Göttler 2017 [81] Untreated gliomas FET 30 Moderate overlap of tumor volumes in FET PET and rCBV maps
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conventional MRI [44, 45]. Important parameters which can

be determined by PWI are the relative cerebral blood vol-

ume (rCBV), relative cerebral blood flow (rCBF), and the

relative mean transit time (MTT) [45–47]. PWI is usually

performed with paramagnetic gadolinium as an exogenous

contrast agent which causes an apparent signal increase in

T1-weighted images and a signal loss in T2 or T2*-

weighted images. Dynamic susceptibility contrast MRI

(DSC) based on T2*weighted imaging using a 2D echo

planar imaging (EPI) is the most widely used method for

PWI [44, 45]. Blood–brain barrier leakage may be a source

of error with DSC which can be reduced by a pre-bolus of

contrast agent prior to acquisition as well as post-processing

techniques for leakage correction [45, 48]. Another method,

dynamic contrast-enhanced MRI (DCE) is also based on a

short bolus of contrast agent and measures changes in T1-

weighted images over time. DCE is less prone to artifacts,

but signal changes are smaller compared with DSC which

results in rather low signal-to-noise ratio in the calculated

parametric maps. Therefore, DCE is infrequently used in

clinical practice and not included in the standard software of

most scanners [47]. Recently, however, multi-echo

sequences have been proposed to correct for leakage effect

for DSC [49] and to extract T1 dynamics [50]. By com-

bining DSC and DCE in a GRE and SE sequence (GESE)

[51], further information about vasculature can be obtained

[52]. Such parametric images can also be used to track

therapy response in brain tumours to antiangiogenic agents

[53]. Moreover, CBF can be measured by arterial spin

labeling (ASL) using magnetically labelled water as

endogenous tracer which avoids an exogenous contrast

agent but the long acquisition time is a disadvantage [45].

Amino acid PET and MR perfusion imaging

for tumour differential diagnosis

If a brain lesion of unclear origin is detected in a patient, it

is of paramount clinical importance to differentiate

between a neoplastic or non-neoplastic process. MRI with

gadolinium-based contrast agents provides a number of

imaging features, which may allow a differential diagnosis

in a considerable fraction of the lesions. The imaging

findings of brain tumours may include diffusely delineated

tumour margins, perifocal oedema, central necrosis, pres-

ence of cystic formations, and a ring-enhancing pattern of

contrast enhancement. The reliability of these signs, how-

ever, is limited. PWI can be helpful in special situations,

for example, to differentiate brain abscesses from malig-

nant gliomas or brain metastases [54].

PET using radiolabelled amino acids generally shows

higher uptake in neoplastic lesions than in non-neoplastic

lesions and increased amino acid uptake in benign lesions

is rare. Nevertheless, false-positive uptake of MET, FET

and FDOPA has been reported in infectious lesions (e.g., in

brain abscesses), demyelinating lesions, ischemic stroke, in

cerebral haemorrhages, and also in patients with status

epilepticus or seizure clusters [34, 55]. Regarding differ-

ential diagnosis, a meta-analysis evaluated 462 patients

with newly diagnosed brain lesions suspected of being

brain tumours and revealed a pooled sensitivity of 82% and

specificity of 76% for the correct diagnosis of primary

brain tumours [56] based on a threshold of the maximum

tumour/brain ratio of 2.1. A subsequent study evaluated

174 patients with newly diagnosed brain lesions and

reported a high specificity (92%), but a lower sensitivity

(57%) for the differentiation of neoplastic from non-neo-

plastic tissue [35]. Nevertheless, in that study, a maximum

tumour/brain ratio of 2.5 or more yielded a very high

positive predictive value for neoplastic tissue of 98%.

Comparative studies between amino acid PET and PWI in

this field are not yet available in the literature.

In summary, imaging findings from both the conven-

tional MRI and PWI as well as amino acid PET may add

Fig. 1 Molecular structure of 11C-methyl-L-methionine (MET), O-

(2-[18F]fluoroethyl)-L-tyrosine (FET), and 3,4-dihydroxy-6-[18F]-flu-

oro-L-phenylalanine (FDOPA)
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valuable additional information for the characterization of

equivocal brain lesions, but they lack sufficient diagnostic

accuracy. Therefore, a histological evaluation of these

suspicious brain lesions by biopsy or resection is frequently

indispensable.

Amino acid PET and MR perfusion imaging

for imaging of tumour extent and biopsy guidance

The diagnostic performance of the conventional MRI to depict

the true extent of cerebral gliomas and to detect the most

aggressive areas in inhomogeneous gliomas is limited and

especially difficult in gliomas showing no contrast enhance-

ment.Representative tissue samplesofbrain tumours arevitally

important for the correct histological tumour diagnosis and

grading, evaluation of molecular markers (e.g., IDHmutation),

prognostication, and treatment decisions. Particularly, in infil-

trating brain tumours with enhancing and non-enhancing

tumour portions, the correct delineation of tumour extent and

the identificationof themostmalignant parts canbe challenging

and may result in under-diagnosis.

For PET, a number of studies have explored the spatial

correlation of histopathological findings with amino acid

uptake and provided evidence that the solid tumour mass of

gliomas typically shows increased amino acid uptake and

detects tumour extent more reliably than standard MRI

[57–62] (Fig. 2). The improved delineation of tumor extent

is one of the most important advances in brain tumor

diagnostics provided by amino acid PET, but it has to be

considered that a fraction of approx. 5% of all gliomas,

especially low-grade gliomas, do not accumulate radiola-

beled amino acids [35]. Nevertheless, amino acid PET is

clearly superior to the standard MRI and the property of

amino acid PET to detect tumour extent has been used in

many studies for treatment planning, especially in tumor

resection and radiation therapy [63–73]. In contrast, only a

few studies have investigated the diagnostic value of PWI

for the detection of brain tumour extent [74, 75]. Those

studies observed elevated rCBV beyond the contrast-en-

hancing volume indicating that tumour infiltration might

also be detected by PWI. A biopsy-controlled study

reported that rCBV regionally correlates with both cell and

microvessel density within gliomas [76]. Another biopsy-

controlled study demonstrated that rCBV correlated with

cell proliferation in high-grade gliomas but a correlation of

rCBV with tumour cell density could not be confirmed

[74]. These studies suggest that rCBV mapping allows only

very limited conclusions with regard to tumor extension.

While some earlier studies comparing amino acid uptake

and rCBV observed similarities between MET uptake and

rCBV abnormalities in gliomas [77, 78], more recent

publications reported on considerably larger tumour vol-

umes in amino acid PET than in rCBV maps and a poor

spatial overlap [23, 79–82] (Figs. 3, 4; Table 1). Further-

more, rCBV mapping exhibited a lower lesion-to-brain

contrast and a highly variable background noise as com-

pared with amino acid PET [23, 79]. Another hybrid PET/

MRI study reported that artifacts due to susceptibility dif-

ferences between bone and air, iron accumulations, and

blood degradation products hampered interpretation of the

rCBV signal in the tumour area in 56% of the patients [80].

Thus, amino acid PET appears to be superior to rCBV

mapping for the detection of the extent of cerebral gliomas

and interpretation of rCBV maps appears to be more

challenging than with amino acid PET.

Regarding biopsy guidance, parametric rCBV maps

have been used to target the most malignant tumour parts,

since the rCBV may indicate tumour parts with neovas-

cularization. Some studies directly comparing local hot

spots in amino acid PET and rCBV maps in gliomas

reported on a spatial colocalization of local maxima

[77, 83], but other studies observed considerable spatial

Fig. 2 Comparison of MRI and FET PET of patient with an

anaplastic astrocytoma WHO grade III. Contrast-enhanced T1-

weighted MRI (A) shows pathological contrast enhancement in the

vicinity of the posterior horn of the right ventricle and corresponding

signal abnormalities in the T2-weighted image (B). FET PET

(C) detects metabolically active tumor tissue extending beyond the

abnormalities in MRI
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distances of the local maxima in both methods [23, 79]

(Table 1; Figs. 5, 6). It remains unclear whether the spatial

position of the local maxima of amino acid uptake or rCBV

in gliomas correspond to the most aggressive part of the

tumour and further comparative studies are needed to

investigate this aspect. Amino acid has been shown to be a

very sensitive method to identify metabolic hot spots in

gliomas for biopsy guidance [84–86]. In low-grade glio-

mas, a sensitivity of 72–79% has been reported for FET

PET to identify a hot spot for biopsy guidance [35, 84].

Furthermore, the evaluation of kinetic parameters such as

time-to-peak values or the curve pattern of FET uptake

derived from dynamic PET scans in gliomas appears to be

helpful to identify areas of malignant progression and

unfavourable prognosis [29, 30, 37, 87–89]. These data

highlight the potential of amino acid PET for the identifi-

cation of metabolically active areas in brain tumours to

target biopsies.

Fig. 3 Hybrid PET/MRI of patient with an astrocytoma WHO grade

II. Contrast-enhanced T1-weighted MR imaging (A) shows a small

area with contrast enhancement in the left frontal lobe while FET PET

(C) detects a large tumor extending within the area of signal

abnormality in the FLAIR image (B). Tumor depiction in rCBV map

(D) is difficult because of a poor tumor to brain contrast

Fig. 4 Comparison between MRI and 18F-DOPA PET of a patient

with an astrocytoma. A non-enhancing (A), FLAIR positive (B) left

temporo-thalamic lesion is seen, corresponding to 18F-DOPA uptake

(C) above the physiological radioactivity of the basal ganglia. In

contrast, rCBV map (D) fails to show increased tumor perfusion. An

anaplastic transformation was observed 3 months later, characterized

by contrast enhancement and increased rCBV (images not shown)

Fig. 5 Hybrid PET/MRI of patient

with a glioblastoma WHO grade IV.

Contrast-enhanced T1-weighted MR

imaging (A) shows a small area with

contrast enhancement in right parietal

lobe and corresponding signal

abnormality in the FLAIR image

(B) which shows focal tracer uptake in

FET PET (C) and correspondingly

increased rCBV (D)
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In summary, both amino acid PET and PWI may be

helpful for biopsy guidance, but the more reliable method

to delineate the glioma extent seems to be amino acid PET.

Amino acid PET and MR perfusion imaging

for tumour grading and prognosis

The evaluation of brain tumor histology is the method of

choice for tumour grading and decisive for treatment

planning. Tissue samples, however, are sometimes not

representative of the most aggressive tumor parts and

varying interpretation by different neuropathologists may

cause uncertainties. Therefore, an agreement of

histopathology with non-invasive imaging parameters may

support the clinical decision-making.

Most studies using amino acid PET in gliomas come to

the conclusion that amino acid uptake does not allow a

reliable prediction of tumour grade owing to highly vari-

able amino acid uptake in gliomas of different WHO

grades [90]. Glioma grading is further affected by high

amino acid uptake in oligodendrogliomas despite the better

prognosis of these tumours in comparison with astrocy-

tomas of the same grade [91–94]. Therefore, static amino

acid PET achieves only an accuracy of 70–80% for pre-

dicting a high-grade gliomas [31, 35, 93, 95]. Analysis of

FET kinetics may slightly improve the discrimination of

high-grade and low-grade glioma in both primary tumours

and recurrent tumours [24, 25, 29, 88, 93, 96, 97].

The significance of PWI for tumour grading has been

investigated in many studies with variable results

[54, 98–101]. One study reported no difference between

PWI and contrast-enhanced MRI [102]. Especially, low-

grade oligodendroglioma may exhibit increased rCBV

despite an excellent prognosis similar to the findings with

amino acid PET [103]. A prospective study with 129

patients achieved a high accuracy in tumour grading with

the conventional MRI based on the parameters contrast

enhancement and necrosis (sensitivity 96%; specificity

70%) and the results did not improve when including PWI

[104]. In contrast, a recent meta-analysis came to the

conclusion that differentiation of low- and high-grade

gliomas was improved by PWI compared with the con-

ventional MRI [105].

While the prognostic significance of amino acid uptake

ratios in gliomas remains questionable, recent studies

indicate that the ‘‘biological tumour volume’’ (BTV) as

determined by amino acid PET represents an independent

prognostic factor [106–108]. In addition, amino acid PET

seems to be useful to predict survival in patients with low-

grade gliomas [38, 109–113]. In patients with newly

diagnosed low-grade glioma, FET PET together with

anatomical MR has been reported to be a significant factor

to predict outcome [38]. In low-grade gliomas, particularly,

FET kinetics may be useful to locate regions of malignant

transformation and poor prognosis [30, 37, 87, 89, 114].

Using PWI, some studies have reported a relationship

between rCBV in gliomas and overall survival [115–117].

A first study comparing FDOPA PET and rCBV in a small

cohort of low-grade gliomas showed a better correlation of

PET parameters with outcome than rCBV [118].

In summary, amino acid PET and PWI can support non-

invasive grading and prediction of outcome in gliomas.

However, the final diagnosis is based on histology of

tumour tissue.

Amino acid PET and MR perfusion imaging

for the diagnosis of tumour recurrence/progression

The distinction between tumour recurrence or progression

and treatment-related changes represents a major challenge

for the conventional MRI, since subacute and late types of

treatment-induced injury, namely, pseudoprogression and

radionecrosis, are characterized by an increase of contrast

enhancement, indistinguishable from tumor progression

[119]. Pseudoprogression usually occurs within the first

12 weeks after irradiation in 10–30% of patients with high-

grade gliomas treated with concomitant temozolomide

[120]. A recent study using FET PET showed an excellent

overall accuracy of 96% (sensitivity, 100%; specificity,

91%) in discriminating pseudoprogression from early

progression in 22 patients with glioblastoma [26]. Studies

assessing pseudoprogression with perfusion-weighted MRI

are more numerous though less promising, probably

because rCBV is influenced by disruption of the BBB

[121–125]. A recent meta-analysis yielded a pooled sen-

sitivity of 89% and a pooled specificity of 80% for DSC

perfusion-weighted imaging in this clinical setting [126].

Diagnostic accuracy of DCE perfusion-weighted images

has been reported in the same range of values [127].

Fig. 6 Hybrid PET/MRI of a patient with an oligoastrocytoma WHO

grade III. Contrast-enhanced T1-weighted MR imaging (A) shows a

large mass in the right parietal lobe showing no contrast enhance-

ment. FET PET (B) detects a local maximum in the paramedian part

of the tumour which is not obvious in the rCBV map (C)
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More data are available on the performances of amino

acid PET to differentiate tumor recurrence from treatment-

related changes in the later stage of the disease. Earlier

experiences with FET showed the superiority of amino acid

PET over the standard MRI in this setting [128]. In a large

heterogeneous cohort of 124 patients with gliomas of dif-

ferent grades and histologies, Galldiks and coworkers

found an accuracy of 93% (sensitivity = 93%, speci-

ficity = 100%) in differentiating neoplastic disease from

treatment-related changes by combining static and dynamic

information from FET scans [129]. In a similar-sized study

of 110 patients, performances of FDOPA PET were

slightly lower, with an accuracy of 82% (sensitiv-

ity = 89.6%, specificity = 72.4%) [130]. The results of

these two latter studies, however, are hardly comparable

because of the different methods of image analysis and of

an unbalanced percentage of recurrent diseases and

unspecific changes in the two patient cohorts. Another

study using F-DOPA PET in a smaller population of 35

patients showed an overall accuracy of 97% in the same

setting [131]. Using MET PET, Terakawa and coworkers

studied a heterogeneous sample of 26 gliomas showing

both sensitivity and specificity of 75% for discriminating

between tumour recurrence and radiation necrosis [132]. In

a later study, D’Souza and coworkers found an overall

accuracy of 89.6% (sensitivity = 94.7%, speci-

ficity = 80%) in 29 patients with high-grade gliomas

[133]. The same group has recently extended these results

to a larger cohort of 64 tumours from various histologies,

particularly emphasizing the higher accuracy of MET over

FDG PET in low-grade gliomas (sensitivity = 93.3%

specificity = 90%) [134].

The performances of PWI techniques (either DSC or

DCE) in correct classification of late treatment-related

changes were assessed by several studies, resulting in

cumulated sensitivity and specificity of 90 and 88%,

respectively [126, 135–138]. Of note, the presence of

haemorrhage, image distortion, and susceptibility artifacts

limits the applicability of DSC perfusion MR images in a

non-negligible number of cases [136, 139]. In some of

these non-interpretable cases, however, DCE MRI seems to

overcome the limitations of DSC images [139]. Some

studies have compared amino acid PET vs PWI and

reported on a similar diagnostic power of PWI in this

setting, but the number of patients in those studies is rel-

atively small, so that currently, no reliable conclusion can

be drawn [133, 140, 141] (Table 1).

Amino acid PET imaging has also proved to be valuable

in discriminating between tumour recurrence and

radionecrosis in brain metastases. Radionecrosis occurs

after a median of 12 months after radiation treatment and

its incidence varies depending on the local radiation dose

[142, 143]. Using FET PET, the combination of static

imaging with dynamic information yielded an overall

accuracy ranging between 87 and 93% in two different

patient cohorts with a total of 76 [28, 144] and 34 brain

metastases, respectively [145]. Encouraging results were

also obtained with FDOPA in 83 brain metastases using a

qualitative approach for image analysis (sensitiv-

ity = 81.3%, specificity = 84.3%) [146] and in another

study in 50 brain metastases using a semiquantitative

approach for image analysis (sensitivity = 90%, speci-

ficity = 92.3%, accuracy = 91.3%) [147]. In addition, this

latter paper reports on the only available direct comparison

between amino acid PET and PWI in this setting, demon-

strating better performances of amino acid PET in classi-

fying indeterminate enlarging brain metastases after

radiation treatment (37 lesions available for comparison,

91.9 vs 75.6% overall accuracy for FDOPA and DSC PWI,

respectively). Recent data from the same group confirmed

the superior performances of F-DOPA PET over MRI

including DSC PWI techniques in assessing the evolution

over time of predominantly radionecrotic brain metastases

after stereotactic radiosurgery [148]. As regards MET,

available data suggest moderately lower discriminating

power (sensitivity = 79%, specificity = 75%) in 51 sec-

ondary lesions [132]. PWI holds promises in the setting of

brain metastases as well, albeit the number of available

studies and patients included is limited [149–151]. At

present, a combined approach for differential diagnosis is

to be encouraged, as already put in practice by single

specialized centers [152, 153].

In summary, available literature shows that both amino

acid PET and perfusion-weighted MRI are useful aids to

the differential diagnosis between tumour progression and

treatment-related changes in both gliomas and brain

metastases; hence, an integrated approach is advised.

Amino acid PET and MR perfusion imaging

for treatment monitoring of brain tumours

The early detection of tumour response to therapy is of

great importance for the optimization of individual tumor

therapy.

In the context of both chemoradiation with temozolo-

mide and temozolomide monotherapy, the reliability of

treatment monitoring using MET was shown in a cohort of

15 patients with heterogeneous tumour histologies and

prior treatment history [154]. Using FET PET, Piroth et al.

demonstrated that an early (7–10 days after treatment

completion) [10% reduction of TBRmax from baseline

was predictor of disease free survival and overall survival

in a homogeneous population of 22 patients with

glioblastoma, whereas no such prognostic significance

could be found for changes in contrast enhancement

[107, 155]. In addition, FET PET demonstrated the ability
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to stratify responses to temozolomide several months ear-

lier than MRI in 11 patients with progressive non-en-

hancing low-grade gliomas [156]. More recently, a

multicenter study demonstrated that changes of tumour

volume in amino acid PET were superior to MRI for

evaluating responses to temozolomide in WHO grade II

glioma and to predict progression-free survival [157].

Amino acid PET tracers were also tested in the response

evaluation of antiangiogenic treatments. A special problem

represents the so-called ‘‘pseudoresponse’’ during antian-

giogenic treatment. Here, a fast reduction of contrast

enhancement in MRI may hide the underlying growth of

the non-enhancing, T2-positive, portion of the tumour. The

sensitivity and reliability of the conventional MRI in this

setting is limited [4]. In a cohort of 11 patients under

bevacizumab treatment, a significant discrepancy between

FET uptake and RANO criteria was observed in 4/11

patients suggesting that FET can detect treatment failure

earlier than the conventional MRI [158]. Similar findings

were subsequently reported in an independent cohort of ten

patients treated with bevacizumab [159]. Using FDOPA

PET, metabolically active tumour volume measured as

early as 2 weeks after therapy initiation, as well as tumour

volume changes during therapy, was also found to be

strong predictors of survival in a larger cohort of 30

patients under bevacizumab/irinotecan [160]. In that study,

there were eight (26%) discordant cases and PET outper-

formed MRI-based RANO criteria.

A few studies have evaluated the performances of PWI

in early treatment assessment. Unfortunately, up to now, no

direct comparison with amino acid PET exists. Sawlani and

colleagues have retrospectively evaluated 16 patients with

glioblastoma undergoing bevacizumab treatment, deriving

an index of local perfusion (hyperperfusion volume, HPV)

which correlated with time-to-progression [161]. The lar-

gest study available included 36 patients with high-grade

gliomas who underwent perfusion-weighted sequences in

addition to standard MRI before and during bevacizumab

treatment [162]. In that study, an improved survival was

obtained in patients with low tumour rCBV either before or

during treatment. In contrast, a study evaluating the effect

of cediranib, a pan-VEGF receptor tyrosine kinase inhi-

bitor, showed that an increase in tumour perfusion was

predictive for better outcome [163], according to the

‘‘vascular normalization hypothesis’’ [164].

In summary, amino acid PET shows convincing results

concerning sensitive and specific assessment of treatment

response at an early stage during chemotherapy or antian-

giogenic therapy. In contrast, despite widespread avail-

ability, PWI has so far only been investigated to a small

extent in this area and further investigations are needed.

Conclusion

In contrast to amino acid PET, most neuro oncological

centres have access to PWI which, however, requires a great

deal of experience to ensure meaningful assessment are

made and therefore is not always used efficiently. Another

limitation of PWI is the lack of standardization of the

methods used and in data processing. Amino acid PET is as

yet not available in every centre, but the method is rapidly

spreading not only because of its diagnostic power but also

because of its robustness and the fact that interpreting amino

acid PET may be easier for clinicians involved in neuro

oncology than PWI owing to the higher tumour to back-

ground contrast andmore homogenous background. The two

methods are based on different biochemical-physiological

mechanisms but can provide diagnostic information beyond

the conventional MRI depending on the clinical question.

At initial diagnosis of space occupying brain lesions, a

relatively reliable differential diagnosis can be achieved by

the use of the conventional MRI and PWI, and amino acid

PET appears necessary in equivocal situations only. In the

case of highly suspicious lesions, both methods can help to

define a site for biopsy to obtain a meaningful histology.

Table 2 Contribution of MRI,

amino acid PET, and PWI in

brain tumour diagnosis

MRI PWI Amino acid PET (MET, FET, FDOPA)

Differential diagnosis ?? – ?

Tumour extent ? ? ??

Biopsy guidance ? ?? ??

Grading ?? ?? ?
a

Prognosis ? ?? ?

Recurrence ? ?? ??

Therapy monitoring ? ? ??

It reflects the personal opinion of the authors on the basis of this literature review and their personal

experience in the field

??, high diagnostic value; ?, limited diagnostic value; –, not helpful
a Increased diagnostic value when using dynamic FET PET
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Amino acid PET, on the other hand, appears to be more

powerful to define the tumor extent (Table 2). If, after the

primary therapy of the tumour, there is a suspicion of

progression or recurrence, both methods are helpful to

differentiate these from unspecific posttherapeutic changes.

An early and sensitive assessment of therapeutic efficacy

can be achieved especially with amino acid PET, while the

data with PWI are sparse despite a broad availability. To

further improve the diagnostics of brain tumours, it seems

necessary to explore the complementary nature of these

two methods in further studies. This is not only in the

interest of the patients, but also of society, since the

treatment costs for this disease are extremely high.
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