000834100 001__ 834100
000834100 005__ 20210129230539.0
000834100 020__ $$a978-3-319-57553-7
000834100 0247_ $$2doi$$a10.1007/978-3-319-57553-7_11
000834100 037__ $$aFZJ-2017-04101
000834100 1001_ $$0P:(DE-Juel1)131950$$aBatra-Safferling, Renu$$b0$$eCorresponding author$$ufzj
000834100 245__ $$aThe Structure of the Polar Core Mutant R175E and Its Functional Implications
000834100 260__ $$aCham$$bSpringer International Publishing$$c2017
000834100 29510 $$aThe Structural Basis of Arrestin Functions
000834100 300__ $$a143-158
000834100 3367_ $$2ORCID$$aBOOK_CHAPTER
000834100 3367_ $$07$$2EndNote$$aBook Section
000834100 3367_ $$2DRIVER$$abookPart
000834100 3367_ $$2BibTeX$$aINBOOK
000834100 3367_ $$2DataCite$$aOutput Types/Book chapter
000834100 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1497351557_20560
000834100 520__ $$aMutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the ‘phosphosensor’, leads to a constitutively active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin . Crystal structure of a R175E mutant arrestin at 2.7 Å resolution reveals significant differences compared to the basal state reported in full-length arrestin structures. Most striking differences are disruption of hydrogen bond network in the polar core , and three-element interaction (between β-strand I, α-helix I, and the C-tail), including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361–404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Comparison of the crystal structures of basal arrestin and R175E mutant provides insights into the mechanism of arrestin activation, where the latter likely represents an intermediate activation state prior to formation of the high-affinity complex with the G protein-coupled receptor.
000834100 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000834100 588__ $$aDataset connected to CrossRef Book
000834100 7001_ $$0P:(DE-Juel1)131965$$aGranzin, Joachim$$b1$$ufzj
000834100 773__ $$a10.1007/978-3-319-57553-7_11
000834100 909CO $$ooai:juser.fz-juelich.de:834100$$pVDB
000834100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131950$$aForschungszentrum Jülich$$b0$$kFZJ
000834100 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131965$$aForschungszentrum Jülich$$b1$$kFZJ
000834100 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000834100 9141_ $$y2017
000834100 920__ $$lyes
000834100 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000834100 980__ $$acontb
000834100 980__ $$aVDB
000834100 980__ $$aI:(DE-Juel1)ICS-6-20110106
000834100 980__ $$aUNRESTRICTED
000834100 981__ $$aI:(DE-Juel1)IBI-7-20200312