001     834123
005     20210129230544.0
024 7 _ |a 10.3389/fpls.2017.00900
|2 doi
024 7 _ |a 2128/15250
|2 Handle
024 7 _ |a WOS:000402951400001
|2 WOS
024 7 _ |a altmetric:20086972
|2 altmetric
024 7 _ |a pmid:28659934
|2 pmid
037 _ _ |a FZJ-2017-04123
082 _ _ |a 570
100 1 _ |a Bucksch, Alexander
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences
260 _ _ |a Lausanne
|c 2017
|b Frontiers Media88991
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1504702304_6622
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Atta-Boateng, Acheampong
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Azihou, Akomian F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Battogtokh, Dorjsuren
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Baumgartner, Aly
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Binder, Brad M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Braybrook, Siobhan A.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Chang, Cynthia
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Coneva, Viktoirya
|0 P:(DE-HGF)0
|b 8
700 1 _ |a DeWitt, Thomas J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Fletcher, Alexander G.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gehan, Malia A.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Diaz-Martinez, Diego Hernan
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Hong, Lilan
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Iyer-Pascuzzi, Anjali S.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Klein, Laura L.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Leiboff, Samuel
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Li, Mao
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Lynch, Jonathan P.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Maizel, Alexis
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Maloof, Julin N.
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Markelz, R. J. Cody
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Martinez, Ciera C.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Miller, Laura A.
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Mio, Washington
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Palubicki, Wojtek
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Poorter, Hendrik
|0 P:(DE-Juel1)129384
|b 26
|u fzj
700 1 _ |a Pradal, Christophe
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Price, Charles A.
|0 P:(DE-HGF)0
|b 28
700 1 _ |a Puttonen, Eetu
|0 P:(DE-HGF)0
|b 29
700 1 _ |a Reese, John B.
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Rellán-Álvarez, Rubén
|0 P:(DE-HGF)0
|b 31
700 1 _ |a Spalding, Edgar P.
|0 P:(DE-HGF)0
|b 32
700 1 _ |a Sparks, Erin E.
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Topp, Christopher N.
|0 P:(DE-HGF)0
|b 34
700 1 _ |a Williams, Joseph H.
|0 P:(DE-HGF)0
|b 35
700 1 _ |a Chitwood, Daniel H.
|0 P:(DE-HGF)0
|b 36
773 _ _ |a 10.3389/fpls.2017.00900
|g Vol. 8, p. 900
|0 PERI:(DE-600)2711035-7
|p 900
|t Frontiers in Functional Plant Ecology
|v 8
|y 2017
|x 1664-462X
856 4 _ |u https://juser.fz-juelich.de/record/834123/files/fpls-08-00900.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834123/files/fpls-08-00900.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834123/files/fpls-08-00900.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834123/files/fpls-08-00900.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834123/files/fpls-08-00900.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834123/files/fpls-08-00900.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:834123
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)129384
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Peer Review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21