001     834129
005     20210129230545.0
037 _ _ |a FZJ-2017-04128
100 1 _ |a Freimuth, Frank
|0 P:(DE-Juel1)130643
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Thursday theoretician seminar
|c Laboratoire de Physique des Solides Orsay
|d 2017-07-06 - 2017-07-06
|w France
245 _ _ |a Geometrical contributions to the Exchange interactions: From Equilibrium to Nonequilibrium
260 _ _ |c 2017
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1497872303_30053
|2 PUB:(DE-HGF)
|x Invited
520 _ _ |a While the spin-spiral approach is a powerful method to calculate the exchange constants of realistic materials within density functional theory, it has the drawback that it does not explicitly express the exchange constants in terms of the electronic structure. In this talk we discuss how to express the exchange constants in terms of electronic structure properties, such as the mixed Berry curvature and the mixed quantum metric, which describe the geometrical properties of the electronic structure in mixed phase space [1]. While the mixed Berry curvature [2,3,4] plays a central role in the Dzyaloshinskii-Moriya interaction the symmetric exchange interaction involves additionally the quantum metric in mixed phase space [1]. Our expressions for the exchange constants bear a strong formal resemblance to Fukuyama's theory [5] of the orbital magnetic susceptibility, which can be expressed in terms of geometrical quantities as well [6]. In contrast to the spin-spiral approach, our formalism expresses the exchange constants directly in terms of the electronic structure information, which allows us to study the relationship to other effects and phenomena important in spintronics. For example, spin-transfer torque and spin-orbit torque [7,8] can be interpreted as nonequilibrium exchange interaction and nonequilibrium magnetic anisotropy. Consequently, the spin-orbit torque is given by the mixed Berry curvature. In first order of the spin-orbit interaction the Dzyaloshinskii-Moriya interaction is related to the ground-state spin current [9]. Thus, spin-currents excited by light are expected to lead to nonequilibrium DMI.References1. F. Freimuth, S. Blügel and Y. Mokrousov, PRB 95, 184428 (2017).2. F. Freimuth, R. Bamler, Y. Mokrousov and A. Rosch, PRB 88, 214409 (2013).3. F. Freimuth, S. Blügel and Y. Mokrousov, JPCM 26, 104202 (2014).4. F. Freimuth, S. Blügel and Y. Mokrousov, JPCM 28, 316001 (2016).5. H. Fukuyama, Progress of Theoretical Physics 45, 704 (1971).6. Y. Gao, S. A. Yang, and Q. Niu, Phys. Rev. B 91, 214405 (2015).7. F. Freimuth, S. Blügel and Y. Mokrousov, PRB 92, 064415 (2015).8. F. Freimuth, S. Blügel and Y. Mokrousov, PRB 90, 174423 (2014).9. F. Freimuth, S. Blügel, and Y. Mokrousov, ArXiv eprints (2016), 1610.06541.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
909 C O |o oai:juser.fz-juelich.de:834129
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130643
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21