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Abstract (max 250 words) 

 

Recently, we showed that the functional heterogeneity of the right dorsal premotor (PMd) cortex 

could be better understood by dividing it into five subregions that showed different behavioral 

associations according to task-based activations studies. The present study investigated whether 

the revealed behavioral profile could be corroborated and complemented by a structural brain 

behavior correlation approach in two healthy adults cohorts.  

Grey matter volume within the five volumes of interest (VOI-GM) was computed using voxel-

based morphometry. Associations between the inter-individual differences in VOI-GM and 

performance across a range of neuropsychological tests were assessed in the two cohorts with and 

without correction for demographical variables. Additional analyses were performed in random 

smaller subsamples drawn from each of the two cohorts.  

In both cohorts, correlation coefficients were low; only few were significant and a considerable 

number of correlations were counterintuitive in their directions (i.e., higher performance related to 

lower GMV). Furthermore, correlation patterns were inconsistent between the two cohorts. 

Subsampling revealed that correlation patterns could vary widely across small samples and that 

negative correlations were as likely as positive correlations.  

Thus, the structural brain/behavior approach did not corroborate the functional profiles of the PMd 

subregions inferred from activation studies, suggesting that local recruitment by fMRI studies does 

not necessarily imply covariance of local structure with behavioral performance in healthy adults. 

We discuss the limitations of such studies and related recommendations for future studies.  

 

Key words: structural brain behavior, functional characterization, voxel-based morphometry, 

replication, type S error. 
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I. Introduction 

 

Understanding the relationship between brain and behavior is the essence of cognitive 

neuroscience. Within the brain mapping perspective, brain-behavior relationships are addressed by 

behavioral characterization of brain regions, i.e., by assigning behavioral functions to brain 

specific grey matter units. A challenging region in this respect is the dorsal premotor cortex 

(PMd). Representing an interface between prefrontal and motor regions, it showed rostro-caudal 

organization as well as functional inferior-superior differentiation and a diverse profile of 

associated behavioral functions (e.g. (Picard and Strick 2001; Hanakawa 2011)). Recently, we 

identified five functional subregions within the right dorsal PM (PMd) by multi-modal 

connectivity-based parcellation (CBP) based on co-activations of right PMd voxels during 

thousands of activation (task-based fMRI and PET) studies. In order to characterize the delineated 

functional parcels of the right PMd in terms of associated behavioral functions, we examined 

hundreds of activation studies reporting activation peaks in the right PMd parcels using 

quantitative forward and reverse inferences based on the BrainMap (Laird et al. 2011) database 

(Genon et al. 2016a). As illustrated in Figure 1, this approach revealed a clear cognitive-motor 

gradient in terms of recruitment by fMRI tasks along the rostro-caudal axis. The rostral PMd was 

mainly activated by higher order cognitive functions, such as working memory and attention, the 

caudal PMd mainly by motor tasks, while the central PMd showed a mixed profile, i.e., was 

activated by both “higher cognitive” and “basic motor” paradigms. The ventral subregion was 

mainly recruited by tasks related to eye movements, such as visual attention, suggesting premotor 

eye field properties, whereas the dorsal subregion was mainly activated by paradigms using finger 

movement and sequence/rhythm aspects.  

[Figure 1 about here] 
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As noted, the behavioral characterization of the right PMd parcels was based on a quantitative 

assessment of activation studies recruiting the respective clusters. Nevertheless, such an approach 

provides a pattern that is inherently limited to the task-based fMRI and PET studies. Behavioral 

tasks used in fMRI and PET experiments, in turn, may have limited ecological validity. 

Furthermore, the performance is frequently constrained within a predefined range due to 

behavioral design parameters (such as limited reaction-time) or to subsequent analysis parameters 

(for example, contrast between task success and failure in an event-related design requires a 

sufficient number of events in both conditions). In addition, the collection of studies can be biased 

towards the most popular behavioral domain or paradigm classes in cognitive neurosciences. In a 

related issue, our quantitative approach of activation studies is based on reported activation peaks 

from published studies. That is, only studies that have been published are taken into account, 

rendering the results potentially susceptible to publication bias (Rothstein et al. 2006). Therefore, 

there is a strong need for corroborating and complementing this behavioral characterization from 

task-activation data by alternative information from a large-scale analysis based on 

complementary cerebral data.  

 

During the past decade, there has been an increased number and prominence of structural brain-

behavior correlations either to explore the morphometric correlates of inter-individual variations in 

specific behavioral aspects (e.g. (Smolker et al. 2015), or confirm the conceptual relationship 

between a given brain region and a behavioral function (e.g. (Wolk et al. 2011)). In a review 

paper, Kanai and Rees (2011) collected evidence that interindividual variability in 

behavior/cognition can be related to interindividual variability in brain structural features, such as 

grey matter volume (GMV), cortical thickness (CT) or white matter (WM)-derived measures. 

Importantly, the relationships between brain and behavior highlighted in previous structural brain 

behavior studies include a wide range of behavioral aspects or phenotypes. These range from basic 
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perceptual abilities (e.g. (Kanai et al. 2011)), to action related processes (e.g. (van Gaal et al. 

2011)), higher cognitive functions (e.g. (Taki et al. 2011; Genon et al. 2014; Genon et al. in press)) 

and complex phenotypes captured by interviews and questionnaires (e.g. (Nostro et al. 2016)). 

Given the wide range of behavioral aspects whose variability correlates with inter-individual 

variability of brain structure, structural brain-behavior correlation appears as a promising approach 

for examining brain-behavior relationship. Therefore, we assumed that the heterogeneous profile 

of behavioral associations of the right PMd parcels revealed by task-based functional data could be 

corroborated and complemented by using a structural brain behavior correlation approach. 

 

One measure for examining grey matter brain structure is grey matter volume (GMV) as computed 

with voxel-based morphometry (VBM). During the past decade, VBM has stood as the most 

widely used method for such purpose. It has been demonstrated that GMV yielded by VBM does 

convey relevant neurobiological aspects of brain structure, as whole brain GMV pattern extracted 

by VBM can be accurately related to biological variables such as age (Luders et al. 2016) and can 

capture meaningful structural changes in aging and neurodegenerative pathology (e.g.(Draganski 

et al. 2013; Gee et al. 2017)), as well as structural neuroplasticity related to training (Draganski et 

al. 2004). Of note, some authors have pointed out the uncertainty of the biological interpretation of 

VBM-based findings considering that VBM outcomes reflect changes in several structural aspects 

including cortical thickness, cortical volume and cortical folding, and thus suggested that surface-

based measures could be additionally used to specifically examine one aspect or another 

(Palaniyappan and Liddle 2012; Kong et al. 2015). However, VBM and surface-based approach as 

provided by Freesurfer (Dale et al. 1999) differ in several technical regards. Consequently, if 

divergent findings between VBM and cortical thickness based on surface are observed, the 

differences are challenging to interpret, as the divergence could be attributed either to the different 

biological aspects captured by the two approaches or to the methodology (Hutton et al. 2009). One 
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alternative approach to surface-based cortical thickness is voxel-based cortical thickness (VBCT). 

Nevertheless, a recent study has shown that while GMV showed a consistent pattern of association 

with cognitive score, CT as computed with VBCT in the same sample showed poor sensitivity in 

correlation with behavior (Manard et al. 2016). Thus, GMV as computed with VBM appeared as a 

neurobiologically meaningful measure likely to correlate with behavioral performance and thus 

that has the potential to reveal specific relationship between brain regions and behavior. 

 

The present study examined behavioral characterization of the right PMd functional parcels 

revealed by a structural brain behavior correlation approach between GMV and a range of 

behavioral measures. Importantly, for the last few years, cognitive neurosciences have been facing 

a replication crisis (e.g. (Ioannidis 2005; Pashler and Wagenmakers 2012; Eklund et al. 2016)) that 

has incited collection of big data samples and replication studies. More recently, the replication 

issue has concerned studies assigning brain regions to behavioral functions through structural brain 

behavior correlation, questioning the replication of the findings of those studies in healthy young 

subjects (Boekel et al. 2015). The same concerns should hold true for the reverse purpose, that is, 

assigning behavioral functions to brain modules using structural brain-behavior correlation. 

Acknowledging these concerns, characterizing the right PMd parcels with a structural brain 

behavior correlation approach should thus be performed on data samples of substantial size. 

Therefore, in the current study, we investigated the relationship between grey matter volume 

(GMV) of the five PMd parcels and behavioral performance in two large samples of healthy adults. 

We additionally examined how stable the correlations were across smaller subsamples covering 

different sample sizes including smaller size commonly used in structural brain-behavior 

correlation studies. We expected the pattern of correlation to mirror the behavioral preferences of 

the parcels revealed by activation studies and to be positive in nature, i.e., better performance 

should correspond to higher local GMV across subjects, nevertheless, we did not constrain our 



 7 

correlation analyses to any specific behavioral measures or any correlation direction, thus 

considering all patterns revealed by the data.  

 

 
II. Methods 

 

II.1. Subjects 

Structural brain behavior correlations were based on data acquired at the Research Centre Jülich 

(FZJ), Germany, and at the Nathan S. Klein Institute (NKI), New York, USA (Nooner et al. 2012). 

Both cohorts� data collection received ethics agreements from local institutional committees and 

all subjects gave informed written consent prior to any testing. Subjects were free of any recent 

neurological or psychiatric disorders as verified by structured interviews and questionnaires 

including the Beck Depression Inventory (BDI-II; (Hautzinger et al. 2006)). Hand preference was 

assessed using the Edinburgh Handedness Inventory (EHI; (Oldfield 1971)). Subjects exceeding 

the cut-off score for mild depression (BDI > 14) and those with left or ambidextrous hand 

preference (EHI < 48; cf. (Oldfield 1971)) were excluded from further analysis. Both cohorts were 

globally matched for age and gender, resulting in a total of 222 healthy subjects (FZJ = 87, NKI = 

135; Table 1). 

 

Table 1. Sample Characteristics 

 FZJ NKI t-/Χ2-statistic p-value 

N 87 135   

Age (± SD) 44.25 (14.03) 47.45 (15.20) -1.58 .116 

Age Range 21-71 20-75   

Gender (% female) 54.02 61.48 1.21 .329 

BDI (± SD) 2.79 (3.27) 2.79 (2.48) -.09 .931 

EHI (± SD) 85.47 (15.37) 84.67 (13.80) .41 .686 

Education (Years) 14.76 (4.13) 15.47 (2.29) -1.66 .098 
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Note: SD = Standard Deviation, BDI = Beck Depression Inventory, EHI = Edinburgh Handedness Inventory, t = 
Student’s t-test statistic, Χ2 = Chi-square test statistic, significant p-value threshold set at p < .05. 
 

 

 

II.2. Behavioral measures 

All subjects performed batteries of standard neuropsychological tests assessing cognitive functions, 

such as attention, executive functions, working memory, verbal fluency, as well as tests on basic 

motor performance detailed in supplementary tables S2 & S3. Some behavioral paradigms were 

similar in both cohorts, such as the Trail Making Test (TMT) and Stroop test/Color Word 

Interference Test. However, basic motor performance was only assessed in FZJ, while 

abstraction/fluid intelligence abilities were only assessed in NKI. Subjects with outlier scores in 

one of the neuropsychological tests (scores of ± 3 standard deviations (SD) from the mean) were 

excluded in a case-wise fashion (of note, the number of outliers removed for each test was  < 10). 

 

II.3. Image acquisition, preprocessing and GM extraction 

Structural T1 weighted MR scans for both samples were acquired on Siemens 3 Tesla whole-body 

scanners (FZJ: TR = 2.25 s, TE = 3.03 ms, flip angle = 9°, resolution = 1 mm isotropic; NKI: TR = 

2.5 s, TE = 3.5 ms, flip angle = 8°, resolution = 1 mm isotropic). T1 images were processed using 

the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html) implemented in SPM8 

(http://www.fil.ion.ucl.ac.uk/spm) using standard settings. Images were corrected for bias-field 

inhomogeneities, segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF) and adjusted for partial volume effect (with a simplified mixed model of at most two tissue 

types: GM-WM and GM-CSF). This procedure results in an estimation of the amount (or fraction) 

of each tissue type present in every voxel. Normalization was performed to the Montreal 

Neurological Institute (MNI) stereotaxic space and included non-linear modulation of the 
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segmented images in which the value of each voxel is modulated by the Jacobian of the warp field 

(i.e. Jacobian determinants from the spatial normalization; (Good et al. 2001)).  

Regional gray matter volumes (GMV) were then computed by the sum of the modulated voxel-

wise values within each of the five right PMd VOIs. i.e., caudal (784 voxels), central (1049 

voxels), rostral (1035 voxels) ventral (685 voxels) and dorsal (590 voxels). The GMV values 

within the VOIs (VOI-GM) were corrected for total brain volume (TBV, i.e., GM + WM) to 

account for individual differences in brain size as it has been suggested that the use of the standard 

modulation in combination with intracranial volume as covariate gives more reliable results 

(Malone et al. 2015).  

Thus, in sum, this procedure yielded a value of GM for each parcel (rostral VOI-GM, central VOI-

GM, caudal VOI-GM, ventral VOI-GM and dorsal VOI-GM) in each individual subject.  

 

II.4. Correlation analysis 

In order to identify demographic variables accounting for variations in both behavioral measures 

and VOI-GM, we first performed Pearson’s product-moment correlations between demographic 

factors (age, gender and education) and both sets of variables. In both cohorts, this preliminary 

analysis revealed associations of the demographic covariates with subjects�neuropsychological 

test performance and some VOI-GM (see Supplementary Material). Age, gender and education 

may hence influence the covariance between behavioral measures of interest and VOI-GM. 

Therefore, the relationship between VOI-GM and neuropsychological measures was examined by 

partial correlation (as implemented in SPSS: https://statistics.laerd.com/spss-tutorials/partial-

correlation-using-spss-statistics.php) accounting for the confounding effect of these covariates. 

Nevertheless, recent replication studies have brought confusion regarding the effect of correction 

for confounding covariates by suggesting that correction for nuisance variables can actually 

increase effect size (Boekel et al. 2016; Muhlert and Ridgway 2016). Furthermore, for sake of 
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parsimony, adjustment was performed by assuming an (only) linear relationship between age and 

our variables of interest (VOI-GM and behavioral scores) and by assuming that time spent in 

formal education is an accurate measure of �cognitive/intellectual� training, while these 

assumptions may not be fully met. In order to investigate such potential detrimental effect of 

confound-adjustment on the correlation patterns (be it by increasing effect size or, reversely, 

obscuring true association), we additionally performed full (crude) Pearson correlation analyses 

between VOI-GM and neuropsychological measures without accounting for demographic 

covariates. 

In addition to the aforementioned concerns about adjustment for demographic covariates, there is 

an ongoing debate about the influence of sample size and power in structural brain behavior 

correlation and neuroimaging in general (e.g. (Friston 2012; Button et al. 2013; Friston 2013; 

Ingre 2013; Carter et al. 2016)). While it is generally admitted that larger sample sizes provide 

more accurate account of the studied effects, recent studies have demonstrated low-powered 

experiments may actually yield stronger evidence than high-powered ones (Wagenmakers et al. 

2015a; Wagenmakers et al. 2015b). In order to explore to which extent the relationship between 

neuropsychological measures and VOI-GM revealed in the two large samples can be evidenced in 

sample sizes used in standard structural brain behavior correlation studies, we performed partial 

correlations in 1000 random subsamples of i) 15 subjects ii) 30 subjects from each cohort (i.e. FZJ 

and NKI, separately), as well as iii) 60 subjects in NKI. 

For all correlation analyses, statistical significance was set at p < .05 (without correction for 

multiple comparisons to balance the analysis towards sensitivity rather than specificity).  

 

II. 5. Sanity check 

To ensure that our data met quality criteria for valid structural brain behavior correlation, a sanity 
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check was performed at several stages and for both structural data and behavioral data. 

Raw structural images in native space, as well as derived normalized GM images were manually 

checked for major artifacts, deformations, displacements, structural abnormalities or tissues 

segmentation errors. In order to illustrate the data quality and in particular accurate segmentation, 

the anatomical images normalized to standard space and the resulting normalized modulated GM 

segment image of three random subjects from each cohorts (with the rostral VOI highlighted in red 

for helping visual comparison) are illustrated in the Supplementary Material. Furthermore, we 

performed data quality measurements with the CAT toolbox implemented in SPM12 

(http://www.neuro.uni-jena.de/cat/) for each sample, which computes the covariance of each non-

linearly modulated gray matter segment over the respective sample. Checking sample 

homogeneity thereby revealed that one subject in FZJ (Figure S2A) cohort showed a covariance 

score of less than two standard deviations of the mean, while seven subjects were such outliers in 

the NKI sampled (Figure S2B). Careful visual inspection of these subjects nevertheless did not 

reveal any global artifact or deformation (Figure S3). It seemed that local pattern of deviation 

related either to local atrophy made these images less similar than their relative samples. Thus, this 

additional quality checking confirmed that the structural data has been accurately preprocessed and 

ensured data quality in the region of interest (PMd). 

Furthermore, in both cohorts, total brain volume (TBV) showed significant negative correlation 

with age. In addition, global covariance between behavioral performance and age was explored in 

both cohorts. In FZJ, all neuropsychological tests showed correlation between at least one of its 

derived index and age (except hand-arm movement task in which only a marginally significant 

correlation was observed between right hand-arm movement and age, p = .051). In NKI, TMT, 

Card Sorting and Design Fluency showed significant correlation with age, but ANT, CWI, Word 

context test, Tower of London, Proverbs and Verbal Fluency tests did not show significant 

correlations with age.  
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In order to further ensure that a structural brain behavior correlation approach was valid in our data, 

we performed whole brain correlation structural brain behavior with basic motor performance. The 

median score at Hand-Arm movement task was introduced in a SPM General Linear Model (GLM) 

when adjusting for demographical variables (age, gender and education). In line with our VOI 

correlation analysis, we searched for a significant correlation without controlling for multiple 

testing (i.e. at p uncorrected for multiple comparison in SPM). Nevertheless, only cluster of 

minimum 10 voxels were considered. The anatomical localizations of the significant clusters were 

labeled according to cytoarchitecture maps with the SPM Anatomy toolbox (Eickhoff et al. 2005). 

We found a significant correlation between basic motor performance and GMV in the right (MNI 

coordinates: 12 -31 72; 82 voxels) and left (MNI coordinates: -18 -28 69, 29 voxels) primary 

motor cortex (Area 4), as well as in the right supramarginal gyrus (MNI coordinates: 64 -44 42, 34 

voxels).  Thus, sanity check showed that the quality of the brain structural data (such as images 

normalization) and the quality of behavioral data allowed structural brain behavior correlation 

analyses.  
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III. Results 
 
 

Correlation analyses controlling for the influence of demographic covariates (i.e., age, gender and 

education) on right PMd VOI-GM and neuropsychological test performance revealed only few 

significant correlations (Figure 2). For reader’s convenience, we flipped the direction of the 

correlations for timing-based and errors-based behavioral measures such that positive correlations 

indicate that higher GMV was associated with better performance. Conversely, all negative 

correlations reflect a rather counterintuitive relationship between VOI-GM and behavioral 

performance in which higher GMV is associated with lower performance. 

 

III.1. Partial correlation analyses 

FZJ.  

In the FZJ cohort, significant positive correlations were only found between rostral VOI-GM and 

performance at Benton Test (correct items, r = .23, p < .05), between caudal VOI-GM and 

performance at Hand-Arm Movement test (right, r = -.26, p < .05; left, r = -.23, p < .05, median, r 

= -.23, p < .05, please note that direction of correlation has been flipped such that the negative 

correlation reflects higher GMV to be associated with lower performance), and between the dorsal 

VOI-GM and performance at Benton Test (errors, r = .22, p < .05). In addition, we found that 

caudal VOI-GM showed significant positive and negative correlations with the Benton Test 

(correct items, r = - .22, p < .05; errors, r = .22, p < .05, please note that direction of correlation 

has been flipped such that the positive correlation reflects higher GMV to be associated with 

higher performance, i.e., fewer errors). Other negative significant correlation was found between 

ventral VOI-GM and Hand-Arm Movement test (left, r = .24, p < .05). In summary, our analysis 

hence revealed only a limited number of associations of which some conformed to our 

expectations (rostral PMd volume is associated with cognitive performance, caudal PMd volume 

with motor performance), but others were highly counter-intuitive.  
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NKI.  

In the NKI cohort, the only significant positive correlation was found between rostral VOI-GM 

and performance at TMT-A, this result was highly significant (r = .32, p < .01). In contrast, 

negative correlations (indicating that higher GMV was associated with worse performance) were 

only found for the dorsal VOI-GM with the Card Sorting Test (r = - .23, p < .05), Word Context 

test (r = - .24, p < .05) and the Proverbs Test (Free Inquiry, r = - .28, p < .05). 

 

[Figure 2 about here] 

 

III.2. Full correlation analyses 

Since correction for confounding variables can have unexpected detrimental effects on the 

correlations, we also examined correlation without correction for confounding effects of age, 

gender and education. The results of this full correlation approach are illustrated in Figure 3.  

 

FZJ.  

Significant positive correlations between ventral VOI-GM and Hand-Arm Movement median 

performance, as well as negative correlation between caudal VOI-GM and Hand-Arm Movement 

performance (left harm score: r = -.22, p < .05; median score: r = -.22, p < .05) were replicated 

with the full Pearson Correlation approach. In contrast, the other positive and negative correlations 

that were found to be significant with the Partial Correlation approach did not remain significant 

with the Full Correlation Approach.  

In turn, several associations not found previously were observed in the full correlation approach. 

These related the rostral VOI-GM to performance at Block Tapping Test (Forwards, r = .26, p < 

.05), the central VOI-GM to performance at Block-Tapping test (forwards: r = .29, p < .01; 
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backwards: r = .22, p < .05) and median number of Finger-Tapping (r = .23, p < .05), as well as 

the ventral VOI-GM to forward Digit Span scores (Score: r = .26, p < .05, Span: r = .21, p < .05) 

and Block-Tapping performance (Forwards; r = .25, p < .05).   

 

NKI. 
  
The significant positive correlation between rostral VOI-GM and performance at TMT-A was 

replicated with the Full Correlation approach (TMT-A; r = .26, p < .01). In addition, the negative 

correlations between dorsal VOI-GM and Card Sorting (Sort Recognition: r = -.24, p < .05), as 

well as Word Context test (r = -.26, p < .05) remained significant with the Full Correlation 

approach. In contrast, the positive correlation between dorsal VOI-GM and performance at Benton 

Test did not remain significant with the Full Correlation Approach.  

In turn, several significant positive correlations were revealed only by the Full Correlation 

approach. These comprised caudal VOI-GM with Conflict-dimension of the Attention Network 

Task (ANT; r = .18, p < .05) as well as ventral VOI-GM with Alert-Dimension of the ANT (r = 

.18, p < .05) and performance at TMT-A (r = .20, p < .05). Somewhat surprisingly, we also 

observed many additional negative correlations indicating better performance being associated 

with lower GMV (that were not evidenced with the Partial Correlation approach). These were 

found for rostral VOI-GM with performance at the Switching condition of the Design Fluency test 

(r = -.18, p < .05), central VOI-GM with performance at the Design Fluency test (Filled Dots: r = -

.19, p < .05; Empty Dots: r = -.21, p < .05), ventral VOI-GM with performance at Design Fluency 

test (Empty Dots; r = -.25, p < .01; Switching: r = -.18, p < .05), dorsal VOI-GM with Free Sorting 

in Card Sorting Task (r = -.27, p < .01), the Filled Dots condition of the Design Fluency test (r = -

.18, p < .05) and Verbal Fluency (Category, r = -.19, Category Switching, r = -.23; p < .05).  

 
[Figure 3 about here] 
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To sum up, our results revealed relatively few significant associations between behavioral 

performance in individual volumes of the PMd parcels, in particular when considering that we 

focused the analysis on sensitivity by not correcting for multiple comparisons. In addition, only 

two findings that indicate a positive relationship between local GMV and behavioral performance 

were consistent across both approaches (partial correlations adjusting for demographic factors and 

full correlations). In the FZJ cohort, we found significant negative correlations between caudal and 

ventral parcel GMV and performance in a motor task (Hand-Arm Movement). In turn, in the NKI 

cohort, we found consistent positive correlations between rostral VOI-GM and visuo-motor speed 

(TMT-A). Unexpectedly, we also found a negative correlation between dorsal VOI-GM and 

inferential reasoning (Card Sorting and Word Context Test) in NKI cohort that was stable across 

both approaches.  

 

In turn, there was little convergence between the findings from the two samples. Evidently, we 

would have expected, that we would be able to obtain conceptual replications between the tests in 

either sample that tap into the same mental functions (such as Stroop-like tasks). Even more 

interestingly, though, we found that for the same test (TMT-A) a correlation with GMV of the 

rostral PMd was found in the NKI but not FZJ sample. As illustrated in Figure 4, the variance in 

rostral VOI-GM values appeared similar in both cohorts, while the range of TMT-A completion 

times was more concentrated to faster reaction times in the FZJ cohort.  

 

[Figure 4 about here] 

 

II.3. Random Sampling 

We first examined whether the direction of observed correlations was stable across many 

independently drawn small samples from our cohorts. When considering that the probability of 
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observing a positive/negative correlation by chance given no systematic effect in the underlying 

population is 50%, it appeared that the proportion of positive/negative correlations in the smaller 

subsamples was close to chance level for many behavioral measures and VOI-GM, and even more 

especially when n = 15. This pattern is illustrated for rostral VOI-GM in Figure 5. For this 

particular VOI, the highest rate of convergence across subsampling was prevalent for negative 

correlations with 80-85% in FZJ when n = 30 and 93-94% in NKI when n = 15. In FZJ, this 

highest rate was observed for negative correlation with performance in the Stroop test (naming and 

interference performance). In the NKI subsamples, this highest rate was reached for the negative 

correlations between rostral VOI-GM and performance in Card Sorting, as well as Word Context.  

 

[Figure 5 about here] 

 
Examination of the percentage of actually (nominally) significant correlation coefficients across 

subsamples revealed that it was generally low. As illustrated in Figure 6, for rostral VOI-GM, it 

closely resembled the rate of expected false positive results at p < .05 under Gaussian assumptions. 

In particular, the rates were mostly below 5% in very small samples (i.e. n = 15) and almost only 

bigger subsamples (i.e. n = 30) outperformed the rate of 5%. Importantly, the highest percentage 

of significant correlation for rostral VOI-GM was reached by performance in the Stroop test, 

which was also one of the most stable correlations in its direction (though a negative one). In 

contrast, the positive association between rostral VOI-GM and performance at TMT-A in the NKI 

data, which appeared as one of the most robust finding in the whole NKI cohort, and one of the 

most stable in its direction across subsamples barely reached 5% (4.9%) of significance in these 

small samples.  

 

[Figure 6 about here] 

IV. Discussion 
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Relating behavior to premotor functional parcels with structural brain behavior correlation:  

uninformative results 

The present study aimed to corroborate functional characterization by task-activation data as 

compiled in the BrainMap database using structural brain-behavior correlations, providing an 

alternative approach to describe what a given brain region is doing. In particular, we examined the 

association between inter-individual variations in GMV computed for five right PMd parcels and a 

broad range of neuropsychological measures in healthy adults, in order to test the hypothesis that 

preferential activation in task-based studies is mirrored by relationships to individual behavioral 

performance. The analyses were performed in two independent samples using both partial 

correlations adjusting for effects of age, gender and education, as well as full correlations. For both 

samples, our results revealed only few significant associations between VOI-GM and test 

performance, whose correlation coefficients (i.e., effect sizes) were generally low and often not 

robust to adjusting for confound effects. Importantly, one of the strongest individual effects 

(correlation between TMT-A and rostral PMd GMV in the NKI sample) was not replicated in the 

FZJ cohort and was significant in less than 10% of subsampling, even when n = 60, and even 

reversed in direction in ~20% to 40% of all subsamples. Thus, our analysis did not allow 

corroborating or extending the findings from functional decoding based on fMRI activations. 

Importantly, sanity check of structural data, behavioral data, and their relationship had ensured that 

our data met standard quality for structural brain behavior correlation approaches. Therefore, we 

consider several issues below that may account for the low brain-behavioral inferential power of 

the used approach. 
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Structural brain behavior correlations in healthy adults: positive, and equally likely, negative 

correlations  

One striking finding in our analyses was the relatively high rate of negative correlations (i.e., 

higher VOI-GM related to lower performance). Somewhat surprisingly, the high prevalence of 

such associations going against the common conception that higher GMV should be associated 

with better behavioral performance was found across both cohorts. Accordingly, examination of 

the proportions across small samples revealed that negative correlations were equally as likely as 

positive correlations. Nevertheless, negative correlations are rarely reported in published studies 

using structural brain-behavior correlations. One reason may be that most of the studies only 

examined the more intuitive positive relationships (i.e., higher GMV is associated with higher 

performance), following the hypothesis that “the bigger the better” (cf., (Yuan and Raz 2014)). In 

their recent structural brain behavior replication study, Boekel et al. (2015) focused on the 

direction of the structural brain behavior correlations reported in the original articles resulting in 

one-sided as opposed to two-sided hypothesis tests. Therefore, to the best of our knowledge, the 

present study is the first to examine potential negative correlations between VOI-GM and a range 

of behavioral measures. However, in a recent study, Smolker et al. (2015) reported negative 

correlations in whole-brain structural brain behavior correlation studies examining brain regions in 

which GMV correlated with performance in tests of executive functions in a cohort of 68 healthy 

subjects. The convergent finding of negative correlation between our VOI-GM structural brain 

behavior correlation study and an independent whole brain structural brain behavior correlation 

study suggests that negative correlation is not an artifact of our VOI-GM approach. Nevertheless, 

probably due to the lack of substantial evidence of negative correlation in the scientific literature, a 

convincing methodological explanation (or neurobiological theory) accounting for this 

phenomenon is still lacking. One potential explanation for negative correlation could be related to 

opposite effects of age on some behavioral performance and grey matter. That is, aging could be 
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related to both performance improvement (due to higher expertise in higher age, (Craik and 

Bialystok 2006)), and grey matter decrease (Raz 2000), resulting in a spurious negative 

relationship between higher performance and decreased GMV. Nevertheless, this hypothesis holds 

true only for negative correlation following the full correlation approach, not adjusted for 

confounding effects of age. Hence, negative correlations were also observed when controlling for 

confounding effects of age on the relationship between behavioral performance and GMV. One 

can not exclude the hypothesis that optimal neurobiological development across adult age would 

imply some kind of synaptic pruning or apoptosis resulting in higher cognitive performance but 

lower grey matter volume as estimated by the VBM approach. However, there is currently no 

well-supported neurobiological theory accounting for negative structural brain behavior 

correlations, thus these hypotheses remain speculative. Accumulating evidence of negative 

correlation would help either to identify a methodological explanation or build a well-supported 

neurobiological theory of the phenomenon. Therefore, future structural brain behavior correlation 

studies should systematically examine and report both, positive and negative, correlations.  

 

Limitations of the VOI approach 

While most of the structural brain behavior correlation studies examined the neural correlates of a 

particular behavioral aspect across the whole brain (Genon et al. 2014; Müller et al. 2015; Smolker 

et al. 2015; Genon et al. 2016b), in the present study, we examined the behavioral correlates of 

GMV in some specific VOIs. In other words, while many structural brain behavior correlation 

studies searched for a significant correlation between a priori defined behavioral measures and 

brain GMV with a voxel-wise approach, we searched for significant correlations between GMV in 

some a-priori defined VOIs and a wide range of behavioral measures. However, when compared to 

whole brain structural brain behavior analyses, the VOI-GM approach may underestimate 
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structural brain behavior correlations for two main reasons: the statistical approach and the VOI 

definition method.  

In our VOI-GM approach, for each subject, each VOI-GM is a summary estimate of voxel 

intensity. Correlation analyses between these summary VOI-GM values and behavioral scores 

were then performed either when controlling for variance related to confounding variables age, 

gender and education or with full variance range. In contrast, most of the whole brain structural 

brain behavior studies have used the General Linear Model (GLM) as implemented voxel-wise in 

SPM (Friston et al. 1994). Searching for structural brain-behavior correlation with this approach is 

often performed by introducing several regressors (or predictors) in addition to the behavioral 

measure of interest (X) in the design matrix, such as age, gender, TBV, and a behavioral measure 

of general cognitive functioning (e.g. (Takeuchi et al. 2010, 2013; Genon et al. 2014)). 

Consequently, each voxel intensity (V) is modelled as a function of explanatory or confounding 

variables (e.g., V = ß1X + ß2age + ß3gender + ß4TBV + ß5 general cognitive functioning + ε). 

Therefore, within such a linear setting, the inclusion of extraneous determinants of the outcome 

(i.e., predictors of GMV) may potentially result in greater efficiency for the estimation of the 

association of interest due to better fit of the prediction model to the data. On the other hand, 

searching across all brain voxels or all voxels within one brain lobe (such as frontal lobe) for 

voxels fitting a prediction (be it complex or simple, such as V =  ß1X + ε) could result in false 

positives. Nevertheless, many previous voxel-wise VBM studies were performed on a great 

number of voxels without correction for multiple comparisons as correction is frequently too 

conservative in standard setting (Smith and Nichols 2009). In sum, either the VOI approach might 

lack sensitivity due to summarizing all voxels pattern to one value, or the voxel-wise GLM 

approach might be too lenient thus overestimating the relationship between GMV variations and 

behavioral performance.    
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Another potential limitation of the VOI-GM approach is related to the issue of VOI definition as 

already suggested by Kanai (2016). This author schematically demonstrated how the spatial 

uncertainty in the VOI definition could influence the estimation of the correlation with a slight 

shift in the (true) peak (or center of gravity) resulting in smaller correlations. In our opinion, Kanai 

raised an important issue. In the framework of relating task-related brain activation to behavioral 

phenotype, the VOI definition issue has already been empirically addressed showing that VOI 

estimates should be defined at the subject-level by the most-activated voxels within each subject’s 

statistical map (e.g., (Tong et al. 2016)). In contrast, the VOI definition question still lacks 

empirical examination in the framework of structural brain behavior correlation analyses. In the 

present study, our VOIs were defined based on a meta-analytic approach of activation studies from 

a previous parcellation study (Genon et al. 2016a). Importantly, cerebral topographical 

organization (i.e., location of brain functional modules) can be complicated by interindividual 

variability (e.g., (Geyer et al. 1996)). Hence, a meta-analytically-defined VOI by essence reflects 

average at the group level. Thus, the definition of a given brain subregion based on a meta-analytic 

approach can be slightly shifted from the exact location of the target brain modules in some 

subjects. In such cases, the estimation of the correlation would be underestimated as suggested by 

Kanai. For these reasons, the VOIs definition in structural brain behavior correlation studies 

should be addressed in future studies. From the methodological perspective, future studies should 

address how different VOI definitions influence the correlation estimations. In a more conceptual 

view, future studies could address whether a structural brain behavior correlation approach can 

confirm a brain-behavior relationship evidenced by an fMRI activation study when VOIs are 

defined at the subject level by the subject-specific cluster of activation. 
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Significant structural brain behavior correlation and the need of variations 

By definition, a correlation reflects a ratio between the covariance of the two variables and the 

product of their standard deviations (i.e., their respective range of variations). Significant and 

powerful structural brain behavior correlations can be observed when the variations in behavioral 

measures associated with neurobiological substrates (be it cortical thickness, grey matter volume 

or white matter) are higher than variations in behavioral measures that are driven by putative 

confounding factors such as mood, arousal state, personality or motivation. In other words, the 

between-subjects behavioral differences should be primarily driven by between-subjects cortical 

morphological differences. However, most of the neuropsychological measures have been 

originally developed to identify behavioral perturbations in clinical populations and, therefore, 

should not be primarily sensitive to variations in the healthy young and middle-age adult 

population. For example, the Delis Kaplan Executive Function System (D-KEFS; (Delis et al. 

2001)) has been designed to assess brain damages in clinical settings. Thus, the neurobiological 

origins of between-subject variations in behavioral performance at standard neuropsychological 

tests in the healthy young and middle-age adult population could be questioned.  

In the present study, we found evidence that correlation crucially depends on the variations in the 

selected sample. For example, we found a highly significant positive correlation between 

performance at TMT-A and VOI-GM in one cohort (NKI) but not in another cohort (FZJ). 

Examination of the scatter plot for the correlation between rostral VOI-GM and TMT-A suggested 

that slightly more scattered TMT-A performance in NKI cohort has allowed significant correlation 

in NKI, but not in FZJ. Thus, our results support the hypothesis that evidence of a correlation 

crucially depends on the variance in the selected sample. In line with this hypothesis, Yuan and 

Raz (2014) have previously shown that effect in structural brain behavior studies of executive 

functions are greater for behavioral measures and samples with greater variations of age, thus 
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suggesting that variations in behavioral measures that related to neurobiological substrates are 

more likely to be observed in an older population.  

Therefore, we suggest that, in order to identify a significant relationship between a given 

behavioral measure (e.g., visuo-motor coordination performance) and a given brain structural 

aspect (e.g., grey matter volume), a study should one the one hand promote sensitive behavioral 

measures and on the other hand capitalize on populations showing variations in both brain 

structural data and behavioral measurements. Such conditions, underlying significant structural 

brain behavior correlations, are more likely to be met in populations that have encountered 

neurocognitive changes or deviations such as older and clinical populations. 

 

Low effect sizes in noisy data possibly reflect spurious findings 

 

The lack of relevant variations in the selected data discussed in the previous section raised a 

related issue: the noise in the data and its plausible relation to statistical significance’s fallacy. 

While our data have been extensively checked for major and global deviations from quality 

standard, they can contain a large noise component. First, collection of behavioral data in human 

cohorts is often performed by several experimenters, which can result in uncontrolled variations in 

test administration (such as variations in instructions, variations in attitude to participant and 

variations of administration rules). Despite such bias can be partly reduced with computerized 

assessment, one can assume that uncontrolled variations (due to the participant’s attitude, e.g. 

(Weber et al. 2002)) cannot be completely ruled out. Second, as discussed in the previous section, 

behavioral measurements in cohort datasets (and big data) have usually not been calibrated for the 

specific purpose of the subsequent brain-behavior studies, which can possibly result in a lack of 

sensitivity and/or validity. Furthermore, despite the computed GMV data conveys 

neurobiologically meaningful information, they are likely to contain significant levels of noise due 
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for example to field inhomogeneities, local deformations, or movement artifacts. We can therefore 

consider that correlation analyses are often performed between GMV and behavioral variables in 

data that contain a non-negligible noise component. In this context, we observed a low effect size 

(or r) and unreliable direction (correlation sign). Such a pattern is actually in line with the recent 

statistical work and discussion of Gelman and collaborators. These authors have shown that 

statistically significant results in a noisy setting (i.e. noisy measurements) are highly likely to be in 

the wrong direction (Type S error) and overestimate the actual effect sizes ((Type M error; 

(Gelman and Carlin 2014; Loken and Gelman 2017)). In light of this empirical consideration, our 

own findings of poor reliability might be considered as reflecting spurious results that can arise 

when VOI-based structural brain behavior correlations are performed in healthy adult cohorts with 

possibly noisy measurements. Thus, together and in line with the recent replication crisis (Boekel 

et al. 2015; Gelman and Geurts 2017), the present study emphasizes that low effect size in noisy 

brain-behavior correlation should be taken with caution rather than indicative of a robust feature of 

brain-behavior relationship. 

  

Conclusions and perspectives 

In the present study we demonstrated that the functional differentiation of the right PMd as 

evidenced by task-based activation profiles could not be corroborated by the analysis structural 

brain behavior correlations, questioning the hypothesized complementary convergence between 

approaches for functional characterization. The present study thus suggests that, within the right 

PMd, functional specialization as observed in fMRI studies does not reliably entail a significant 

covariance of individual structure with behavioral performance in healthy adults. Based on the 

current results and recent findings from others (Boekel et al. 2015; Boekel et al. 2016; Kanai 2016; 

Muhlert and Ridgway 2016), we outlined a few potential limitations and related recommendations 

for future studies. Namely, future studies should more systematically examine, report and discuss 
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negative correlations, address the influence of the VOI definition on null results, and consider low 

effect size in data with possibly a large noise components as likely reflecting spurious findings. 
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Figure captions: 

 

Figure 1. The five right PMd parcels and their behavioral functional characterization across the 

Brainmap database (Genon et al. 2016a). 

 

Figure 2. Partial correlations between right PMd VOI-GM and behavioral performance in the FZJ 

and NKI cohorts; color coding: blue = negative, red = positive; significant correlation coefficients 

(p ≤ .05, uncorrected for multiple testing) are highlighted with a bold font and square frame; TMT: 

Trail-Making Test, CWI: Color Word Interference, ANT: Attention Network Test. 

 
Figure 3. Pearson’s correlations between right PMd VOI-GM and behavioral performance in the 

FZJ and NKI cohorts; color coding: blue = negative, red = positive; significant correlation 

coefficients (p ≤ .05, uncorrected for multiple testing) are highlighted with a bold font and square 

frame. TMT: Trail-Making Test, CWI: Color Word Interference, ANT: Attention Network Test. 

 
Figure 4. Scatter plot of rostral VOI-GM and raw TMT-A performance in FZJ and NKI cohorts.  

 
Figure 5. Percentage ratio of positive (red) and negative (blue) correlation coefficients in the 

rostral VOI-GM parcel for the FZJ (A) and NKI (B) cohorts, irrespective of level of significance. 

TMT: Trail-Making Test, CWI: Color Word Interference, ANT: Attention Network Test. 

 
Figure 6. Percentage of significant correlations across 1000 random subsampling of different sizes 

(n = 15, yellow; n = 30, orange; n = 60, red) with replacements in FZJ cohort (A) and in NKI 

cohort (B). 
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Rostral_PMd	 Caudal_PMd	 Central_PMd	 Ventral_PMd	 Dorsal_PMd	

				FZJ	
Finger	Tapping	(Right)	 0.05	 -0.08	 0.05	 0.08	 0.01	

Finger	Tapping	(Le^)	 0.03	 -0.01	 0.02	 0.12	 0.06	

Finger	Tapping	(Median)	 0.05	 -0.07	 0.08	 0.14	 0.01	

Hand-Arm	Movements	(Right)	 0.05	 -0.26	 0.05	 0.12	 0.08	

Hand-Arm	Movements	(Le^)	 0.00	 -0.23	 -0.12	 0.24	 -0.05	

Hand-Arm	Movements	(Median)	 0.13	 -0.23	 0.04	 0.24	 0.03	

TMT-A	 -0.20	 -0.11	 -0.05	 -0.03	 -0.03	

TMT-B	 -0.09	 -0.12	 -0.05	 -0.12	 0.08	

Digit-Symbol	Test	 0.01	 -0.10	 -0.06	 0.12	 0.06	

Digit	Span	Score	(Forwards)	 -0.07	 -0.19	 -0.16	 0.00	 -0.08	

Digit	Span	Score	(Backwards)	 -0.02	 -0.07	 0.05	 -0.01	 0.04	

Digit	Span	(Forwards)	 -0.01	 -0.18	 -0.13	 -0.07	 -0.13	

Digit	Span	(Backwards)	 0.23	 -0.22	 0.13	 0.13	 0.01	

Benton	Test	(Correct	Items)	 0.12	 0.22	 0.04	 0.15	 0.22	
Benton	Test	(Errors)	 0.21	 0.03	 0.09	 0.13	 0.02	

Stroop	Task	(Reading)	 -0.17	 0.01	 -0.03	 -0.02	 -0.02	

Stroop	Task	(Naming)	 -0.05	 0.12	 0.11	 0.14	 -0.11	

Stroop	Task	(Color-Word	Interference)	 0.12	 0.10	 0.20	 0.07	 -0.02	

Block	Tapping	(Forwards)	 0.11	 -0.09	 0.17	 0.10	 -0.03	

				NKI	
ANT	(Alert)	 0.04	 0.05	 0.01	 0.18	 0.13	

ANT	(Orien2ng)	 -0.02	 0.16	 0.00	 -0.09	 -0.11	

ANT	(Conflict)	 -0.08	 -0.04	 -0.17	 -0.14	 0.07	

TMT-A	 0.32	 -0.07	 0.12	 0.19	 -0.05	

TMT-B	 -0.06	 -0.23	 -0.20	 -0.08	 -0.17	

Card	Sor2ng	(Free	Sor2ng)	 0.16	 0.00	 0.06	 0.05	 -0.22	

Card	Sor2ng	(Sort	Recogni2on)	 0.12	 -0.05	 0.10	 0.03	 -0.23	
Verbal	Fluency	(LeIer)	 0.06	 -0.08	 -0.09	 -0.08	 -0.11	

Verbal	Fluency	(Category)	 0.04	 0.07	 -0.06	 -0.03	 -0.08	

Verbal	Fluency	(Category	Switching)	 0.01	 -0.02	 -0.02	 -0.03	 -0.19	

Design	Fluency	(Filled	Dots)	 0.10	 -0.02	 0.00	 -0.01	 -0.06	

Design	Fluency	(Empty	Dots)	 -0.03	 -0.07	 -0.13	 -0.16	 -0.09	

Design	Fluency	(Switching)	 -0.07	 -0.04	 0.03	 -0.15	 -0.03	

CWI	(Color-Naming)	 0.17	 -0.15	 -0.03	 -0.04	 -0.09	

CWI	(Word-Reading)	 0.18	 0.18	 0.12	 0.22	 -0.10	

CWI	(Inhibi2on/Switching)	 0.06	 -0.09	 -0.04	 -0.08	 0.02	

20	Ques2ons	 -0.03	 -0.05	 -0.02	 0.09	 -0.11	

Word	Context	 -0.08	 -0.17	 -0.12	 -0.07	 -0.24	
Tower	of	London	 0.01	 -0.20	 -0.14	 -0.12	 -0.01	

Proverbs	(Free	Inquiry)	 0.04	 -0.11	 0.00	 0.05	 -0.28	
Proverbs	(Mul2ple	Choice)	 0.02	 0.04	 -0.02	 0.03	 -0.22	



			NKI	
ANT	(Alert)	 0.03	 0.00	 0.05	 0.18	 0.01	

ANT	(Orien2ng)	 0.02	 0.13	 0.01	 -0.03	 -0.05	
ANT	(Conflict)	 0.03	 0.18	 0.00	 -0.06	 0.13	

TMT-A	 0.26	 0.09	 0.16	 0.20	 0.03	
TMT-B	 0.12	 0.03	 0.01	 0.03	 -0.08	

Card	Sor2ng	(Free	Sor2ng)	 0.10	 -0.12	 -0.10	 -0.13	 -0.27	

Card	Sor2ng	(Sort	Recogni2on)	 0.09	 -0.09	 -0.01	 -0.09	 -0.24	
Verbal	Fluency	(LeIer)	 0.01	 -0.09	 -0.11	 -0.03	 -0.15	

Verbal	Fluency	(Category)	 0.08	 0.01	 -0.12	 0.04	 -0.19	

Verbal	Fluency	(Category	Switching)	 0.04	 0.00	 0.02	 0.02	 -0.23	

Design	Fluency	(Filled	Dots)	 -0.10	 -0.15	 -0.19	 -0.16	 -0.18	

Design	Fluency	(Empty	Dots)	 -0.15	 -0.07	 -0.22	 -0.25	 -0.11	

Design	Fluency	(Switching)	 -0.18	 -0.12	 -0.14	 -0.18	 -0.15	
CWI	(Color-Naming)	 0.03	 -0.13	 -0.08	 -0.03	 -0.13	
CWI	(Word-Reading)	 0.05	 0.01	 0.00	 0.12	 -0.09	

CWI	(Inhibi2on/Switching)	 0.02	 0.01	 0.07	 0.02	 -0.01	
20	Ques2ons	 0.05	 0.18	 0.12	 0.00	 -0.02	
Word	Context	 -0.09	 -0.03	 -0.03	 -0.11	 -0.26	

Tower	of	London	 0.06	 0.10	 -0.03	 -0.12	 0.09	
Proverbs	(Free	Inquiry)	 0.03	 -0.05	 0.03	 0.02	 -0.16	

Proverbs	(Mul2ple	Choice)	 -0.09	 0.06	 -0.04	 -0.05	 -0.06	

Rostral_PMd	 Caudal_PMd	 Central_PMd	 Ventral_PMd	 Dorsal_PMd	

			FZJ	
Finger	Tapping	(Right)	 0.10	 -0.07	 0.19	 0.13	 -0.15	

Finger	Tapping	(Le^)	 0.05	 -0.06	 0.21	 0.19	 -0.14	

Finger	Tapping	(Median)	 0.08	 -0.08	 0.23	 0.18	 -0.16	

Hand-Arm	Movements	(Right)	 0.01	 -0.21	 0.11	 0.22	 0.05	

Hand-Arm	Movements	(Le^)	 -0.07	 -0.22	 0.00	 0.20	 -0.05	

Hand-Arm	Movements	(Median)	 0.03	 -0.22	 0.09	 0.26	 0.01	

TMT-A	 0.00	 0.04	 0.06	 0.15	 0.01	

TMT-B	 0.10	 0.03	 0.11	 0.18	 0.04	

Digit-Symbol	Test	 0.15	 0.20	 0.10	 0.17	 0.02	

Digit	Span	Score	(Forwards)	 0.06	 -0.02	 0.14	 0.26	 0.06	

Digit	Span	Score	(Backwards)	 0.09	 -0.08	 -0.01	 0.18	 -0.09	

Digit	Span	(Forwards)	 0.06	 -0.03	 0.20	 0.21	 0.09	

Digit	Span	(Backwards)	 0.12	 -0.09	 0.01	 0.19	 -0.10	

Benton	Test	(Correct	Items)	 0.06	 -0.17	 -0.01	 -0.03	 0.10	

Benton	Test	(Errors)	 0.05	 -0.19	 -0.03	 -0.06	 0.10	

Stroop	Task	(Reading)	 0.19	 0.17	 0.21	 0.17	 0.08	

Stroop	Task	(Naming)	 -0.10	 0.06	 -0.01	 0.05	 -0.01	

Stroop	Task	(Color-Word	Interference)	 0.02	 0.15	 0.14	 0.21	 -0.11	

Block	Tapping	(Forwards)	 0.26	 0.20	 0.29	 0.25	 -0.02	

Block	Tapping	(Backwards)	 0.20	 -0.02	 0.22	 0.20	 -0.06	













Neuropsychological
Test Unit of Measurement N Mean SD Minimum Maximum Test Description Reference

Finger-Tapping No. of taps within 10 s      Continuous tapping movements with either the right or left
index finger -

 Right Index Finger  83 56.23 7.98 36 72   
 Left Index Finger  82 48.72 7.41 30 66   
 Median (Left/Right)  83 52.64 7.30 33 72   
Hand-Arm
Movements (10x30)

Time to perform 10
consecutive movements (in
s)

     Movement of either hand between two points separated by a
distance of 30 cm Defer et al., 1999

 Right Hand  83 7.28 1.74 4 12   
 Left Hand  83 7.44 1.76 4 13   
 Median (Left/Right)  82 7.31 1.65 4 12   
Trail-Making Test Time to complete (in s)      Connecting arrays of dots as accurately and fast as possible with

respect to their sequence properties AITB, 1944

 TMT-A  86 20.87 7.60 9 45 Ascending digits  
 TMT-B  86 39.58 19.76 16 95 Ascending (alternating) digits and

letters  
Digit Symbol No. of correct symbols 78 81.09 17.05 46 122

Assign symbols to digits, ranging from 1 to 9, given a
predefined symbol key Wechsler, 1958

Digit Span       Verbal reproduction of auditory presented sequences of digits,
which gradually increase in size from trial to trial Wechsler, 1958

 Forwards No. of correctly
reproduced items 86 4.66 1.06 3 7   

 Backwards  86 4.44 1.19 2 7   
 Score Forwards Total test score 86 8.56 2.17 4 13   
 Score Backward  87 7.98 2.30 3 14   
Benton       Reproduction of previously presented geometrical figures after a

pre-defined learning period Siva, 1992

 Correct Items No. of correct items 83 4.16 2.53 0 11   
 Errors No. of errors 83 6.95 1.67 3 10   
CW-Stroop Time to complete (in s)      Attentional processing of simultaneously presented, but

conflicting information Stroop, 1935; Bäumler, 1985

 Word-Reading  85 29.20 4.17 21 44
Naming black-on-white printed
words of highly distinguishable
colors

 

 Color-Naming  87 42.64 7.60 27.2 62.5 Naming rectangles printed in highly
distinguishable colors  

 Interference  85 67.09 13.82 36 96 Naming word color while ignoring
its written content  

Block-Tapping No. of correctly reproduced
items      Reproduction of sequences of tapped blocks provided by the

experimenter, gradually increasing in value from trial to trial Corsi, 1972

 Forwards  87 4.06 1.07 2 7   
 Backwards  87 3.46 1.21 1 6   
 
Table S2. Neuropsychological assessment, derived scores and global performance in FZJ dataset. No = number.
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Neuropsychological
Test Unit of Measurement N Mean SD Minimum Maximum Test Description Reference

Attentional Network
Task

Response time cost between
cueing conditions (in ms)      

Flanker-task, in which subjects are required to identify a
target among distracting stimuli yielding 3 sub-functions of
attention

Fan et al., 2002

 Alert  132 33.18 26.97 -52 119   
 Orienting  133 19.57 21.13 -44 69   
 Conflict  133 115.53 44.58 47 255   
Trail-Making Test Time to complete (in s)      Connecting arrays of dots as accurately and fast as possible

with respect to their sequence properties Delis et al. 2001

 TMT-A  131 30.95 9.30 16 66 Ascending digits  
 TMT-B  129 81.41 31.93 39 184 Ascending (alternating) digits and letters  
Card Sorting       Sorting of cards with perceptual or lexical content Delis et al. 2001

 Free Sorting Composite
Score 75 38.00 10.95 16 63 Sorting given cards into groups using as many

rules as possible  
 Sort Recognition Composite

Score 74 35.96 11.81 12 61 Identification and naming of sorting rules
provided by the examiner  

Verbal Fluency Sum of correct responses       Delis et al. 2001

 Letter Fluency  133 39.44 12.02 9 73 Naming words beginning with a specified
letter as fast as possible  

 Category Fluency  132 40.85 8.69 20 61 Naming words belonging to a specified
category as fast as possible  

 Category Switching  133 13.94 3.10 7 23 Naming words while switching between two
specified categories as fast as possible  

Design Fluency No. of correctly produced
items      Creating unique designs by connecting matrices of five dots

with straight lines Delis et al. 2001

 Filled Dots  134 10.51 3.04 4 19   
 Empty Dots  134 10.41 2.68 4 17   
 Switching  134 11.04 2.77 4 19   
Color-Word
Interference Time to complete (in s)      Attentional processing of simultaneously presented, but

conflicting information Delis et al. 2001

 Word-Reading  133 29.24 5.92 18 48 Naming black-on-white printed words of
highly distinguishable colors  

 Color-Naming  131 21.31 3.65 14 34 Naming rectangles printed in highly
distinguishable colors  

 Interference  132 55.61 13.23 31 101 Naming word color while ignoring its written
content  

20 Questions Total no. of yes/no questions 128 28.27 6.33 19 48 Identifying common, but unknown objects using simple
yes/no questions Delis et al. 2001

Word Context No. of consecutively correct
responses 76 23.49 6.72 10 35 Identifying the meaning of made-up words based on clues

provided by the examiner Delis et al. 2001

Tower Test Composite Score 134 15.69 3.97 4 25 Moving disks of varying size from origin to destination while
maintaining a pre-defined set of moving-rules Delis et al. 2001

Proverbs Composite score       Delis et al. 2001

 Free Inquiry  130 10.56 2.56 3 15 Interpreting proverbs without cues  

 Multiple Choice  130 81.49 31.60 5 100
Selecting correct interpretations of proverbs
out of multiple alternatives provided by
examiner
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Figure S1: Anatomical images normalized to standard space (left) and the resulting
normalized modulated GM segment image (right) of three random subjects from each
cohorts with the rostral VOI highlighted in red.
 



Figure S2. Mean correlations across normalized modulated GM images in FZJ cohort (A) in
NKI cohort (B).
 



Figure S2. Mean correlations across normalized modulated GM images in FZJ cohort (A) in
NKI cohort (B).
 

Figure S3. Deviants normalized modulated GM images following cross-correlation. The first
seven subjects were highlighted in the NKI cohort and the last one (right lower images) was
highlighted in FZJ cohort. No local artifact was evidenced at the location of the right PMd as
illustrated here.
 


