001     834153
005     20210129230550.0
024 7 _ |a 10.1021/acs.jpcb.7b02886
|2 doi
024 7 _ |a WOS:000404202000003
|2 WOS
037 _ _ |a FZJ-2017-04151
082 _ _ |a 530
100 1 _ |a Akers, Peter W.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Using Neutron Reflectometry to Characterize Antimicrobial Protein Surface Coatings
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1498458189_10861
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the interaction of adsorbed or covalently immobilized proteins with solid substrates at the molecular level guides the successful design of functionalized surfaces used in biomedical applications. In this report, neutron reflectometry (NR) was used to characterize the structure of surface-attached antimicrobial protein films, with antimicrobial activity assessed using an adaption of the Japanese Industrial Standard Test JIS Z 2801. NR allowed parameters influencing bioactivity to be measured at nanometer resolution and for conclusions about structural characteristics relating to bioactivity to be drawn. Hydramacin-1 (HM-1) and lysozyme were covalently attached to poly(methyl methacrylate) (PMMA) and 3-aminopropyltriethoxysilane (APTES) films in the presence and absence of a four-unit poly(ethylene glycol) PEG-based spacer and measured using NR, followed by antimicrobial assays. APTES-PEG-protein films were structurally unique, with a layer of 80% water directly beneath the protein layer, and were the only films that displayed antimicrobial activity against Escherichia coli and Bacillus subtilis. The hydration content of these films combined with the subtle difference in the PEG layer thickness of APTES versus PMMA films played a role in defining antimicrobial activity of the prepared surface coatings.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
700 1 _ |a Dingley, Andrew
|0 P:(DE-Juel1)145681
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Swift, Simon
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nelson, Andrew R. J.
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
700 1 _ |a Martin, Julie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a McGillivray, Duncan J.
|0 P:(DE-HGF)0
|b 5
773 _ _ |a 10.1021/acs.jpcb.7b02886
|0 PERI:(DE-600)2006039-7
|n 24
|p 5908–5916
|t The @journal of physical chemistry / B
|v 121
|y 2017
|x 1089-5647
856 4 _ |u https://juser.fz-juelich.de/record/834153/files/Using%20Neutron%20Reflectometry%20to%20Characterize%20Antimicrobial%20Protein%20Surface%20Coatings.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834153/files/Using%20Neutron%20Reflectometry%20to%20Characterize%20Antimicrobial%20Protein%20Surface%20Coatings.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834153/files/Using%20Neutron%20Reflectometry%20to%20Characterize%20Antimicrobial%20Protein%20Surface%20Coatings.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834153/files/Using%20Neutron%20Reflectometry%20to%20Characterize%20Antimicrobial%20Protein%20Surface%20Coatings.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834153/files/Using%20Neutron%20Reflectometry%20to%20Characterize%20Antimicrobial%20Protein%20Surface%20Coatings.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834153/files/Using%20Neutron%20Reflectometry%20to%20Characterize%20Antimicrobial%20Protein%20Surface%20Coatings.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834153
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145681
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM B : 2015
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21