000834199 001__ 834199
000834199 005__ 20230426083147.0
000834199 0247_ $$2doi$$a10.1103/PhysRevB.95.245421
000834199 0247_ $$2ISSN$$a0163-1829
000834199 0247_ $$2ISSN$$a0556-2805
000834199 0247_ $$2ISSN$$a1094-1622
000834199 0247_ $$2ISSN$$a1095-3795
000834199 0247_ $$2ISSN$$a1098-0121
000834199 0247_ $$2ISSN$$a1550-235X
000834199 0247_ $$2ISSN$$a2469-9950
000834199 0247_ $$2ISSN$$a2469-9969
000834199 0247_ $$2Handle$$a2128/14767
000834199 0247_ $$2WOS$$aWOS:000404019900010
000834199 037__ $$aFZJ-2017-04182
000834199 082__ $$a530
000834199 1001_ $$0P:(DE-HGF)0$$aVarykhalov, A.$$b0$$eCorresponding author
000834199 245__ $$aTilted Dirac cone on W(110) protected by mirror symmetry
000834199 260__ $$aWoodbury, NY$$bInst.$$c2017
000834199 3367_ $$2DRIVER$$aarticle
000834199 3367_ $$2DataCite$$aOutput Types/Journal article
000834199 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521100314_16836
000834199 3367_ $$2BibTeX$$aARTICLE
000834199 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834199 3367_ $$00$$2EndNote$$aJournal Article
000834199 520__ $$aTopologically nontrivial states reveal themselves in strongly spin-orbit coupled systems by Dirac cones. However, their appearance is not a sufficient criterion for a topological phase. In topological insulators, where these states protect surface metallicity, they are straightforwardly assigned based on bulk-boundary correspondence. On metals, where these states are suspected to have tremendous impact as well, e.g., in catalysis, their topological protection is difficult to assess due to the lacking band gap and the frequent assignment to topological properties appears unjustified. Here, we discover by angle-resolved photoemission a state with the dispersion of a Dirac cone at a low-symmetry point of W(110). Our ab initio calculations predict this feature with a linear band crossing and high spin polarization. However, instead of being born by topology, the states arise from Rashba split bands and do not fundamentally depend on the opening of a spin-orbit gap. On the other hand, we find that the [001] mirror plane protects the band crossing point and renormalizes the dispersion towards a Dirac-cone shape. In this sense, the discovered state is the metal counterpart of the surface state of a topological crystalline insulator. The Dirac cone is tilted due to its origin in an accidental band crossing away from high symmetry points. Tilted Dirac cones have recently been predicted for two- and three-dimensional materials and were observed in three-dimensional Weyl semimetals. Accordingly, the protection and renormalization by mirror symmetry uncovered here are a potentially much wider spread phenomenon which does not require topological properties. Our results also indicate why the massive gapless crossing predicted for topological crystalline insulators has never been observed.
000834199 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000834199 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x1
000834199 542__ $$2Crossref$$i2017-06-20$$uhttp://link.aps.org/licenses/aps-default-license
000834199 588__ $$aDataset connected to CrossRef
000834199 7001_ $$0P:(DE-HGF)0$$aMarchenko, D.$$b1
000834199 7001_ $$0P:(DE-HGF)0$$aSánchez-Barriga, J.$$b2
000834199 7001_ $$0P:(DE-HGF)0$$aGolias, E.$$b3
000834199 7001_ $$0P:(DE-HGF)0$$aRader, O.$$b4
000834199 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b5$$ufzj
000834199 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.95.245421$$bAmerican Physical Society (APS)$$d2017-06-20$$n24$$p245421$$tPhysical Review B$$v95$$x2469-9950$$y2017
000834199 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.95.245421$$gVol. 95, no. 24, p. 245421$$n24$$p245421$$tPhysical review / B$$v95$$x2469-9950$$y2017
000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.pdf$$yOpenAccess
000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.gif?subformat=icon$$xicon$$yOpenAccess
000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834199 909CO $$ooai:juser.fz-juelich.de:834199$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000834199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b5$$kFZJ
000834199 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000834199 9141_ $$y2017
000834199 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834199 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834199 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000834199 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015
000834199 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834199 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834199 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834199 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834199 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834199 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834199 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834199 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834199 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834199 920__ $$lyes
000834199 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000834199 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000834199 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000834199 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000834199 980__ $$ajournal
000834199 980__ $$aVDB
000834199 980__ $$aI:(DE-Juel1)IAS-1-20090406
000834199 980__ $$aI:(DE-Juel1)PGI-1-20110106
000834199 980__ $$aI:(DE-82)080009_20140620
000834199 980__ $$aI:(DE-82)080012_20140620
000834199 980__ $$aUNRESTRICTED
000834199 9801_ $$aFullTexts
000834199 999C5 $$1B. A. Bernevig$$2Crossref$$9-- missing cx lookup --$$a10.1515/9781400846733$$y2013
000834199 999C5 $$2Crossref$$oTopological Insulators 2013$$tTopological Insulators$$y2013
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.3045
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.1057
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1969
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3449
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2442
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms2191
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.045302
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.195312
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1167733
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature06843
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.155431
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.125129
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep21790
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.066804
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.235106
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(75)90330-1
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.76.034711
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.045415
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.153412
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.081407
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.115135
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.075406
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature15768
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.4066
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.216802
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.035117
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.066808
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.161411
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep29394
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.076804
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.155401
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.057601
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/15/9/095005
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.155132
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.115440
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.035412
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.864
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.42.5433
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.085138
000834199 999C5 $$2Crossref$$oAngle-Resolved Photoemission: Theory and Current Applications 1992$$tAngle-Resolved Photoemission: Theory and Current Applications$$y1992
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1270
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2015.07.008
000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/1.1434500