000834199 001__ 834199 000834199 005__ 20230426083147.0 000834199 0247_ $$2doi$$a10.1103/PhysRevB.95.245421 000834199 0247_ $$2ISSN$$a0163-1829 000834199 0247_ $$2ISSN$$a0556-2805 000834199 0247_ $$2ISSN$$a1094-1622 000834199 0247_ $$2ISSN$$a1095-3795 000834199 0247_ $$2ISSN$$a1098-0121 000834199 0247_ $$2ISSN$$a1550-235X 000834199 0247_ $$2ISSN$$a2469-9950 000834199 0247_ $$2ISSN$$a2469-9969 000834199 0247_ $$2Handle$$a2128/14767 000834199 0247_ $$2WOS$$aWOS:000404019900010 000834199 037__ $$aFZJ-2017-04182 000834199 082__ $$a530 000834199 1001_ $$0P:(DE-HGF)0$$aVarykhalov, A.$$b0$$eCorresponding author 000834199 245__ $$aTilted Dirac cone on W(110) protected by mirror symmetry 000834199 260__ $$aWoodbury, NY$$bInst.$$c2017 000834199 3367_ $$2DRIVER$$aarticle 000834199 3367_ $$2DataCite$$aOutput Types/Journal article 000834199 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521100314_16836 000834199 3367_ $$2BibTeX$$aARTICLE 000834199 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000834199 3367_ $$00$$2EndNote$$aJournal Article 000834199 520__ $$aTopologically nontrivial states reveal themselves in strongly spin-orbit coupled systems by Dirac cones. However, their appearance is not a sufficient criterion for a topological phase. In topological insulators, where these states protect surface metallicity, they are straightforwardly assigned based on bulk-boundary correspondence. On metals, where these states are suspected to have tremendous impact as well, e.g., in catalysis, their topological protection is difficult to assess due to the lacking band gap and the frequent assignment to topological properties appears unjustified. Here, we discover by angle-resolved photoemission a state with the dispersion of a Dirac cone at a low-symmetry point of W(110). Our ab initio calculations predict this feature with a linear band crossing and high spin polarization. However, instead of being born by topology, the states arise from Rashba split bands and do not fundamentally depend on the opening of a spin-orbit gap. On the other hand, we find that the [001] mirror plane protects the band crossing point and renormalizes the dispersion towards a Dirac-cone shape. In this sense, the discovered state is the metal counterpart of the surface state of a topological crystalline insulator. The Dirac cone is tilted due to its origin in an accidental band crossing away from high symmetry points. Tilted Dirac cones have recently been predicted for two- and three-dimensional materials and were observed in three-dimensional Weyl semimetals. Accordingly, the protection and renormalization by mirror symmetry uncovered here are a potentially much wider spread phenomenon which does not require topological properties. Our results also indicate why the massive gapless crossing predicted for topological crystalline insulators has never been observed. 000834199 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0 000834199 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x1 000834199 542__ $$2Crossref$$i2017-06-20$$uhttp://link.aps.org/licenses/aps-default-license 000834199 588__ $$aDataset connected to CrossRef 000834199 7001_ $$0P:(DE-HGF)0$$aMarchenko, D.$$b1 000834199 7001_ $$0P:(DE-HGF)0$$aSánchez-Barriga, J.$$b2 000834199 7001_ $$0P:(DE-HGF)0$$aGolias, E.$$b3 000834199 7001_ $$0P:(DE-HGF)0$$aRader, O.$$b4 000834199 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b5$$ufzj 000834199 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.95.245421$$bAmerican Physical Society (APS)$$d2017-06-20$$n24$$p245421$$tPhysical Review B$$v95$$x2469-9950$$y2017 000834199 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.95.245421$$gVol. 95, no. 24, p. 245421$$n24$$p245421$$tPhysical review / B$$v95$$x2469-9950$$y2017 000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.pdf$$yOpenAccess 000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.gif?subformat=icon$$xicon$$yOpenAccess 000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000834199 8564_ $$uhttps://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000834199 909CO $$ooai:juser.fz-juelich.de:834199$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000834199 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b5$$kFZJ 000834199 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000834199 9141_ $$y2017 000834199 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000834199 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000834199 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000834199 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2015 000834199 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000834199 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000834199 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000834199 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000834199 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000834199 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000834199 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000834199 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000834199 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000834199 920__ $$lyes 000834199 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0 000834199 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1 000834199 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000834199 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3 000834199 980__ $$ajournal 000834199 980__ $$aVDB 000834199 980__ $$aI:(DE-Juel1)IAS-1-20090406 000834199 980__ $$aI:(DE-Juel1)PGI-1-20110106 000834199 980__ $$aI:(DE-82)080009_20140620 000834199 980__ $$aI:(DE-82)080012_20140620 000834199 980__ $$aUNRESTRICTED 000834199 9801_ $$aFullTexts 000834199 999C5 $$1B. A. Bernevig$$2Crossref$$9-- missing cx lookup --$$a10.1515/9781400846733$$y2013 000834199 999C5 $$2Crossref$$oTopological Insulators 2013$$tTopological Insulators$$y2013 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.82.3045 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.83.1057 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms1969 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3449 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys2442 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms2191 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.045302 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.195312 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1167733 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature06843 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.155431 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.125129 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep21790 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.066804 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.235106 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(75)90330-1 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.76.034711 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.045415 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.153412 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.081407 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.91.115135 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.90.075406 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature15768 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.4066 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.216802 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.035117 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.066808 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.86.161411 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep29394 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.076804 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.155401 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.057601 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/15/9/095005 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.94.155132 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.115440 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.035412 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.24.864 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.42.5433 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.92.085138 000834199 999C5 $$2Crossref$$oAngle-Resolved Photoemission: Theory and Current Applications 1992$$tAngle-Resolved Photoemission: Theory and Current Applications$$y1992 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1270 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2015.07.008 000834199 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/1.1434500