001     834199
005     20230426083147.0
024 7 _ |a 10.1103/PhysRevB.95.245421
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/14767
|2 Handle
024 7 _ |a WOS:000404019900010
|2 WOS
037 _ _ |a FZJ-2017-04182
082 _ _ |a 530
100 1 _ |a Varykhalov, A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Tilted Dirac cone on W(110) protected by mirror symmetry
260 _ _ |a Woodbury, NY
|c 2017
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521100314_16836
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Topologically nontrivial states reveal themselves in strongly spin-orbit coupled systems by Dirac cones. However, their appearance is not a sufficient criterion for a topological phase. In topological insulators, where these states protect surface metallicity, they are straightforwardly assigned based on bulk-boundary correspondence. On metals, where these states are suspected to have tremendous impact as well, e.g., in catalysis, their topological protection is difficult to assess due to the lacking band gap and the frequent assignment to topological properties appears unjustified. Here, we discover by angle-resolved photoemission a state with the dispersion of a Dirac cone at a low-symmetry point of W(110). Our ab initio calculations predict this feature with a linear band crossing and high spin polarization. However, instead of being born by topology, the states arise from Rashba split bands and do not fundamentally depend on the opening of a spin-orbit gap. On the other hand, we find that the [001] mirror plane protects the band crossing point and renormalizes the dispersion towards a Dirac-cone shape. In this sense, the discovered state is the metal counterpart of the surface state of a topological crystalline insulator. The Dirac cone is tilted due to its origin in an accidental band crossing away from high symmetry points. Tilted Dirac cones have recently been predicted for two- and three-dimensional materials and were observed in three-dimensional Weyl semimetals. Accordingly, the protection and renormalization by mirror symmetry uncovered here are a potentially much wider spread phenomenon which does not require topological properties. Our results also indicate why the massive gapless crossing predicted for topological crystalline insulators has never been observed.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a Magnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)
|0 G:(DE-Juel1)jiff13_20131101
|c jiff13_20131101
|f Magnetic Anisotropy of Metallic Layered Systems and Nanostructures
|x 1
542 _ _ |i 2017-06-20
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Marchenko, D.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sánchez-Barriga, J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Golias, E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rader, O.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bihlmayer, G.
|0 P:(DE-Juel1)130545
|b 5
|u fzj
773 1 8 |a 10.1103/physrevb.95.245421
|b American Physical Society (APS)
|d 2017-06-20
|n 24
|p 245421
|3 journal-article
|2 Crossref
|t Physical Review B
|v 95
|y 2017
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.95.245421
|g Vol. 95, no. 24, p. 245421
|0 PERI:(DE-600)2844160-6
|n 24
|p 245421
|t Physical review / B
|v 95
|y 2017
|x 2469-9950
856 4 _ |u https://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/834199/files/PhysRevB.95.245421.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:834199
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130545
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1515/9781400846733
|1 B. A. Bernevig
|2 Crossref
|9 -- missing cx lookup --
|y 2013
999 C 5 |y 2013
|2 Crossref
|t Topological Insulators
|o Topological Insulators 2013
999 C 5 |a 10.1103/RevModPhys.82.3045
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.83.1057
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms1969
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat3449
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys2442
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms2191
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.045302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.195312
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1167733
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature06843
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.155431
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.125129
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep21790
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.066804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.235106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0039-6028(75)90330-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.76.034711
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.045415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.153412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.081407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.91.115135
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.075406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature15768
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.82.4066
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.89.216802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.035117
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.066808
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.161411
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/srep29394
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.105.076804
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.155401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.057601
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/15/9/095005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.94.155132
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.115440
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.035412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.24.864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.42.5433
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.92.085138
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |y 1992
|2 Crossref
|t Angle-Resolved Photoemission: Theory and Current Applications
|o Angle-Resolved Photoemission: Theory and Current Applications 1992
999 C 5 |a 10.1038/nphys1270
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.ultramic.2015.07.008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1134/1.1434500
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21