000834210 001__ 834210
000834210 005__ 20220930130125.0
000834210 0247_ $$2Handle$$a2128/15052
000834210 037__ $$aFZJ-2017-04193
000834210 1001_ $$0P:(DE-Juel1)166302$$aYakoubi, Rachida$$b0$$eFirst author$$ufzj
000834210 1112_ $$aSfN's 46th annual meeting$$cSan Diego$$d2016-11-12 - 2016-11-16$$wUSA
000834210 245__ $$aSynaptic organization in layer 5 of the human temporal lobe: A quantitative electron microscopic analysis
000834210 260__ $$c2016
000834210 3367_ $$033$$2EndNote$$aConference Paper
000834210 3367_ $$2BibTeX$$aINPROCEEDINGS
000834210 3367_ $$2DRIVER$$aconferenceObject
000834210 3367_ $$2ORCID$$aCONFERENCE_POSTER
000834210 3367_ $$2DataCite$$aOutput Types/Conference Poster
000834210 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1501584646_13619$$xOther
000834210 520__ $$aSynapses are the key elements for signal transduction and plasticity in the brain, thus controlling the induction, maintenance and termination of signal transduction in any given neuronal microcircuit.Despite a relatively large number of publications on structural and functional aspects of various synapses in the central nervous system of different animal species, very little is known about these structures in humans, in particular about their quantitative geometry. Hence, synapses in cortical layer 5 - the main output station of the neocortex and a recipient layer of thalamocortical afferents of the human temporal lobe - were investigated using serial ultrathin sectioning and digital electron microscopic images. This was followed by three dimensional (3D) volume reconstructions leading in the generation of quantitative 3D-models of synapses. We focused on structural parameters that are the most critical factors underlying synaptic transmission and plasticity, such as the shape, size, number, and distribution of active zones (AZs, functional transmitter release sites) as well as the organization and size of the three pools of synaptic vesicles, namely the readily releasable, the recycling and reserve pool. In addition, immunohistochemistry against glutamine synthetase was carried out to investigate the structural relationship of synapses and astrocytes and thus their contribution to synaptic transmission and plasticity.A total of 152 synaptic boutons and their target structures were completely analyzed. The majority were established either on dendritic spines (~76%) the remainder on shafts. Synaptic boutons were highly variable in both shape and size (6.20±0.77 μm2; 0.42±0.07 μm3, ranging from 0.46 to 27.33 μm2; 0.10 to 1.93 μm3) with a skew to middle-sized boutons. Several mitochondria (0-26) were found in the presynaptic bouton constituting ~6% of the total volume. The majority of boutons (~88%) had a single pre- (0.452±0.358 µm2; 0.003±0,001 μm3) and postsynaptic densities (0.405±0.100 μm2; 0.01±0.01 μm3), sometimes perforated. The mean total pool size of synaptic vesicles was 1580.19±255.19 (ranging from 142 to 8413) with a mean diameter of 31.99±0.87 nm. Strikingly, no correlation was found between the size of the boutons with that of mitochondria, AZs and the pool of vesicles. Synaptic complexes were surrounded by a dense network of fine astrocytic processes reaching the synaptic cleft, thus regulating the temporal and spatial glutamate concentration.The quantitative 3D-models of synapses will lead to an improved understanding of the function of synapses in cortical networks in humans.
000834210 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000834210 7001_ $$0P:(DE-Juel1)131704$$aRollenhagen, Astrid$$b1$$ufzj
000834210 7001_ $$0P:(DE-HGF)0$$aMarec, von Lehe$$b2
000834210 7001_ $$0P:(DE-HGF)0$$aKurt, Sätzler$$b3
000834210 7001_ $$0P:(DE-Juel1)131696$$aLübke, Joachim$$b4$$eCorresponding author$$ufzj
000834210 8564_ $$uhttps://juser.fz-juelich.de/record/834210/files/Yakoubi_Poster_San_Diego_2016.pdf$$yOpenAccess
000834210 8564_ $$uhttps://juser.fz-juelich.de/record/834210/files/Yakoubi_Poster_San_Diego_2016.gif?subformat=icon$$xicon$$yOpenAccess
000834210 8564_ $$uhttps://juser.fz-juelich.de/record/834210/files/Yakoubi_Poster_San_Diego_2016.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834210 8564_ $$uhttps://juser.fz-juelich.de/record/834210/files/Yakoubi_Poster_San_Diego_2016.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834210 8564_ $$uhttps://juser.fz-juelich.de/record/834210/files/Yakoubi_Poster_San_Diego_2016.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834210 8564_ $$uhttps://juser.fz-juelich.de/record/834210/files/Yakoubi_Poster_San_Diego_2016.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834210 8767_ $$92016-05-03$$d2016-06-13$$eOther$$jZahlung erfolgt$$zMembership fee, Rückerstattung
000834210 8767_ $$92016-05-03$$d2016-06-13$$eSubmission fee$$jZahlung erfolgt$$zRückerstattung
000834210 909CO $$ooai:juser.fz-juelich.de:834210$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost
000834210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166302$$aForschungszentrum Jülich$$b0$$kFZJ
000834210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131704$$aForschungszentrum Jülich$$b1$$kFZJ
000834210 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131696$$aForschungszentrum Jülich$$b4$$kFZJ
000834210 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000834210 9141_ $$y2017
000834210 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834210 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000834210 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000834210 980__ $$aposter
000834210 980__ $$aVDB
000834210 980__ $$aUNRESTRICTED
000834210 980__ $$aI:(DE-Juel1)INM-2-20090406
000834210 980__ $$aI:(DE-82)080010_20140620
000834210 980__ $$aAPC
000834210 9801_ $$aAPC
000834210 9801_ $$aFullTexts