001     834219
005     20250129094240.0
024 7 _ |a 10.1103/PhysRevB.95.214408
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/14722
|2 Handle
024 7 _ |a WOS:000403069600006
|2 WOS
024 7 _ |a altmetric:18251970
|2 altmetric
037 _ _ |a FZJ-2017-04201
082 _ _ |a 530
100 1 _ |a Kunkemöller, S.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Magnon dispersion in Ca2Ru1−xTixO4: Impact of spin-orbit coupling and oxygen moments
260 _ _ |a Woodbury, NY
|c 2017
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1498461943_10858
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The magnon dispersion of Ca2RuO4 has been studied by polarized and unpolarized neutron scattering experiments on crystals containing 0, 1, and 10% of Ti. Ti is inserted in order to enable the growth of large, partially detwinned crystals. One percent of Ti has a negligible impact on structural and magnetic properties. Also for 10% Ti content magnetic properties still change very little, but the insulating phase is stabilized up to at least 700 K and structural distortions are reduced. The full dispersion of transverse magnons studied for 1% Ti substitution can be well described by a conventional spin-wave model with interaction and anisotropy parameters that agree with density functional theory calculations. Spin-orbit coupling strongly influences the magnetic excitations, as it is most visible in large energies of the magnetic zone-center modes arising from magnetic anisotropy. Additional modes appear at low energy near the antiferromagnetic zone center and can be explained by a sizable magnetic moment of 0.11 Bohr magnetons, which the density functional theory calculations find located on the apical oxygens. The energy and the signal strength of the additional branch are well described by taking into account this oxygen moment with weak ferromagnetic coupling to the Ru moments.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 1
536 _ _ |a 6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)
|0 G:(DE-HGF)POF3-6212
|c POF3-621
|f POF III
|x 2
536 _ _ |a 6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)
|0 G:(DE-HGF)POF3-6213
|c POF3-621
|f POF III
|x 3
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 4
542 _ _ |i 2017-06-12
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
693 _ _ |0 EXP:(DE-Juel1)ILL-IN12-20150421
|5 EXP:(DE-Juel1)ILL-IN12-20150421
|e ILL-IN12: Cold neutron 3-axis spectrometer
|x 0
700 1 _ |a Komleva, E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Streltsov, S. V.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hoffmann, S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Khomskii, D. I.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Steffens, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sidis, Y.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schmalzl, K.
|0 P:(DE-Juel1)130943
|b 7
700 1 _ |a Braden, M.
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 1 8 |a 10.1103/physrevb.95.214408
|b American Physical Society (APS)
|d 2017-06-12
|n 21
|p 214408
|3 journal-article
|2 Crossref
|t Physical Review B
|v 95
|y 2017
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.95.214408
|g Vol. 95, no. 21, p. 214408
|0 PERI:(DE-600)2844160-6
|n 21
|p 214408
|t Physical review / B
|v 95
|y 2017
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/834219/files/PhysRevB.95.214408.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/834219/files/PhysRevB.95.214408.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/834219/files/PhysRevB.95.214408.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/834219/files/PhysRevB.95.214408.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/834219/files/PhysRevB.95.214408.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/834219/files/PhysRevB.95.214408.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:834219
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130943
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6212
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6213
|x 3
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 4
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-Juel1)JCNS-ILL-20110128
|k JCNS-ILL
|l JCNS-ILL
|x 3
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-ILL-20110128
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
999 C 5 |a 10.1143/JPSJ.66.1868
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.84.2666
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.63.174432
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat3236
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.146401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/372532a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/25315
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/29038
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.81.011009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.60.R8422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.58.847
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.077202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.104.226401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms15176
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.056403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.88.017201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.81.2747
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.216403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2003-00483-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjb/e20020021
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9781139096782
|1 D. I. Khomskii
|2 Crossref
|9 -- missing cx lookup --
|y 2014
999 C 5 |a 10.1103/PhysRevLett.111.197201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.90.035137
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.115.247201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0921-4526(99)00989-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/crat.201600020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0921-4526(93)90108-I
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/27/16/166002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |y 2005
|2 Crossref
|t Neutron Scattering from Magnetic Materials
|o Neutron Scattering from Magnetic Materials 2005
999 C 5 |a 10.1103/PhysRevB.86.060410
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja01520a007
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.57.1236
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.014505
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0921-4534(96)00637-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.201102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.88.197002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.054422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.094104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2002-00284-x
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.24.3939
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.3.041036
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjb/e2016-60588-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 P. Blaha
|y 2001
|2 Crossref
|t WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
|o P. Blaha WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties 2001
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1605
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.064429
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/9/4/002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.075145
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.56.2556
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.89.087202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/4121
|1 W. A. Harrison
|2 Crossref
|9 -- missing cx lookup --
|y 1999
999 C 5 |a 10.1038/nphys4077
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1515/zkri-2014-1737
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21