001 | 834261 | ||
005 | 20210129230607.0 | ||
024 | 7 | _ | |a 10.1021/acsmacrolett.7b00318 |2 doi |
024 | 7 | _ | |a WOS:000406087600016 |2 WOS |
024 | 7 | _ | |a 2128/22862 |2 Handle |
037 | _ | _ | |a FZJ-2017-04243 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Ghavami, Ali |0 P:(DE-Juel1)164360 |b 0 |
245 | _ | _ | |a Solvent Induced Inversion of Core-Shell Microgels |
260 | _ | _ | |a Washington, DC |c 2017 |b ACS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1498468496_10863 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The morphology of core–shell microgels under different swelling conditions and as a function of the core–shell thickness ratio is systematically characterized by mesoscale hydrodynamic simulations. With increasing hydrophobic interaction of the shell polymers, we observe drastic morphological changes from a core–shell structure to an inverted microgel, where the core is turned to the outside, or a microgel with a patchy surface of core polymers directly exposed to the environment. We establish a phase diagram of the various morphologies. Moreover, we characterize the polymer and microgel conformations. For sufficiently thick shells, the changes of the shell size upon increasing hydrophobic interactions are well described by the Flory–Rehner theory. Additionally, this theory provides a critical line in the phase diagram separating core–shell structures from the distinct two other phases. The appearing new phases provide a novel route to nano- and microscale functionalized materials. |
536 | _ | _ | |a 551 - Functional Macromolecules and Complexes (POF3-551) |0 G:(DE-HGF)POF3-551 |c POF3-551 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Winkler, Roland G. |0 P:(DE-Juel1)131039 |b 1 |e Corresponding author |
773 | _ | _ | |a 10.1021/acsmacrolett.7b00318 |g p. 721 - 725 |0 PERI:(DE-600)2644375-2 |p 721 - 725 |t ACS Macro Letters |v 6 |y 2017 |x 2161-1653 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/834261/files/acsmacrolett.7b00318.pdf |y Restricted |
856 | 4 | _ | |x icon |u https://juser.fz-juelich.de/record/834261/files/acsmacrolett.7b00318.gif?subformat=icon |y Restricted |
856 | 4 | _ | |x icon-1440 |u https://juser.fz-juelich.de/record/834261/files/acsmacrolett.7b00318.jpg?subformat=icon-1440 |y Restricted |
856 | 4 | _ | |x icon-180 |u https://juser.fz-juelich.de/record/834261/files/acsmacrolett.7b00318.jpg?subformat=icon-180 |y Restricted |
856 | 4 | _ | |x icon-640 |u https://juser.fz-juelich.de/record/834261/files/acsmacrolett.7b00318.jpg?subformat=icon-640 |y Restricted |
856 | 4 | _ | |x pdfa |u https://juser.fz-juelich.de/record/834261/files/acsmacrolett.7b00318.pdf?subformat=pdfa |y Restricted |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/834261/files/coreshell_inversion_rev.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/834261/files/coreshell_inversion_rev.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:834261 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131039 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-551 |2 G:(DE-HGF)POF3-500 |v Functional Macromolecules and Complexes |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ACS MACRO LETT : 2015 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b ACS MACRO LETT : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-2-20090406 |k IAS-2 |l Theorie der Weichen Materie und Biophysik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|