000834294 001__ 834294
000834294 005__ 20240711101503.0
000834294 0247_ $$2doi$$a10.1016/j.apenergy.2017.10.117
000834294 0247_ $$2ISSN$$a0306-2619
000834294 0247_ $$2ISSN$$a1872-9118
000834294 0247_ $$2WOS$$aWOS:000419813100015
000834294 037__ $$aFZJ-2017-04276
000834294 082__ $$a620
000834294 1001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b0$$eCorresponding author
000834294 245__ $$aPower-to-Gas Electrolyzers as an Alternative to Network Expansion - An Example from a Distribution System Operator
000834294 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000834294 3367_ $$2DRIVER$$aarticle
000834294 3367_ $$2DataCite$$aOutput Types/Journal article
000834294 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515596749_4338
000834294 3367_ $$2BibTeX$$aARTICLE
000834294 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834294 3367_ $$00$$2EndNote$$aJournal Article
000834294 520__ $$aThe high share of fluctuating renewable energy sources (FRES) such as wind and photovoltaic (PV) necessitates the need for controllable generation, storage devices or adjustable consumption, due to the surplus arising from installed capacity that exceeds the conventional electrical load. The use of this surplus to produce hydrogen and oxygen via electrolysis is called “Power-to-Gas” (P2G). This study investigates the potential use of electrolyzers in the electrical distribution grid as an alternative to a network expansion with cables. For this purpose, an existing distribution grid was modelled and the possible size of an electrolyzer investigated so as to achieve the same effect as with an electrical cable in terms of, for example, the voltage level. The investment cost of both possibilities was compared and the hydrogen production costs analyzed. The results show that laying a cable is currently a more cost-effective option in comparison to an electrolyzer, costing around 30% of the overall investment required for the electrolyzer. The remaining 70% of the electrolyzer cost needs to be met by other means, for example by selling the hydrogen produced. However, profitability is highly dependent on the surplus in the grid and thus the full load hours of the electrolyzer. Furthermore, the results obtained cannot be generalized, since they are highly influenced by the scenario used.
000834294 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000834294 588__ $$aDataset connected to CrossRef
000834294 7001_ $$0P:(DE-Juel1)166095$$aRaje, Tanmay$$b1
000834294 7001_ $$0P:(DE-HGF)0$$aNykamp, Stefan$$b2
000834294 7001_ $$0P:(DE-HGF)0$$aRott, Tobias$$b3
000834294 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b4
000834294 7001_ $$0P:(DE-Juel1)129852$$aGrube, Thomas$$b5
000834294 7001_ $$0P:(DE-HGF)0$$aKatzenbach, Burkhard$$b6
000834294 7001_ $$0P:(DE-HGF)0$$aKüppers, Stefan$$b7
000834294 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b8
000834294 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2017.10.117$$gVol. 210, p. 182 - 197$$p182 - 197$$tApplied energy$$v210$$x0306-2619$$y2018
000834294 8564_ $$uhttps://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.pdf$$yRestricted
000834294 8564_ $$uhttps://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.gif?subformat=icon$$xicon$$yRestricted
000834294 8564_ $$uhttps://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834294 8564_ $$uhttps://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834294 8564_ $$uhttps://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834294 8564_ $$uhttps://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834294 909CO $$ooai:juser.fz-juelich.de:834294$$pVDB
000834294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b0$$kFZJ
000834294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b4$$kFZJ
000834294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129852$$aForschungszentrum Jülich$$b5$$kFZJ
000834294 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b8$$kFZJ
000834294 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000834294 9141_ $$y2018
000834294 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015
000834294 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834294 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000834294 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000834294 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834294 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834294 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834294 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834294 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834294 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834294 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000834294 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015
000834294 920__ $$lyes
000834294 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000834294 980__ $$ajournal
000834294 980__ $$aVDB
000834294 980__ $$aI:(DE-Juel1)IEK-3-20101013
000834294 980__ $$aUNRESTRICTED
000834294 981__ $$aI:(DE-Juel1)ICE-2-20101013