001     834294
005     20240711101503.0
024 7 _ |a 10.1016/j.apenergy.2017.10.117
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a WOS:000419813100015
|2 WOS
037 _ _ |a FZJ-2017-04276
082 _ _ |a 620
100 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 0
|e Corresponding author
245 _ _ |a Power-to-Gas Electrolyzers as an Alternative to Network Expansion - An Example from a Distribution System Operator
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515596749_4338
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The high share of fluctuating renewable energy sources (FRES) such as wind and photovoltaic (PV) necessitates the need for controllable generation, storage devices or adjustable consumption, due to the surplus arising from installed capacity that exceeds the conventional electrical load. The use of this surplus to produce hydrogen and oxygen via electrolysis is called “Power-to-Gas” (P2G). This study investigates the potential use of electrolyzers in the electrical distribution grid as an alternative to a network expansion with cables. For this purpose, an existing distribution grid was modelled and the possible size of an electrolyzer investigated so as to achieve the same effect as with an electrical cable in terms of, for example, the voltage level. The investment cost of both possibilities was compared and the hydrogen production costs analyzed. The results show that laying a cable is currently a more cost-effective option in comparison to an electrolyzer, costing around 30% of the overall investment required for the electrolyzer. The remaining 70% of the electrolyzer cost needs to be met by other means, for example by selling the hydrogen produced. However, profitability is highly dependent on the surplus in the grid and thus the full load hours of the electrolyzer. Furthermore, the results obtained cannot be generalized, since they are highly influenced by the scenario used.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Raje, Tanmay
|0 P:(DE-Juel1)166095
|b 1
700 1 _ |a Nykamp, Stefan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Rott, Tobias
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 4
700 1 _ |a Grube, Thomas
|0 P:(DE-Juel1)129852
|b 5
700 1 _ |a Katzenbach, Burkhard
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Küppers, Stefan
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 8
773 _ _ |a 10.1016/j.apenergy.2017.10.117
|g Vol. 210, p. 182 - 197
|0 PERI:(DE-600)2000772-3
|p 182 - 197
|t Applied energy
|v 210
|y 2018
|x 0306-2619
856 4 _ |u https://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834294/files/1-s2.0-S0306261917315623-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834294
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129852
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21