000834295 001__ 834295
000834295 005__ 20240711101503.0
000834295 0247_ $$2doi$$a10.1016/j.renene.2017.10.017
000834295 0247_ $$2ISSN$$a0960-1481
000834295 0247_ $$2ISSN$$a1879-0682
000834295 0247_ $$2WOS$$aWOS:000416498700040
000834295 0247_ $$2altmetric$$aaltmetric:23355132
000834295 037__ $$aFZJ-2017-04277
000834295 082__ $$a333.7
000834295 1001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b0$$eCorresponding author
000834295 245__ $$aImpact of Different Time Series Aggregation Methods on Optimal Energy System Design
000834295 260__ $$a[Ankara]$$bGazi Univ., Fac. of Technology, Dep. of Electrical & Electronics Eng.$$c2017
000834295 3367_ $$2DRIVER$$aarticle
000834295 3367_ $$2DataCite$$aOutput Types/Journal article
000834295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515596197_4332
000834295 3367_ $$2BibTeX$$aARTICLE
000834295 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834295 3367_ $$00$$2EndNote$$aJournal Article
000834295 520__ $$aModeling renewable energy systems is a computationally-demanding task due to the high fluctuation of supply and demand time series. To reduce the scale of these, this paper discusses different methods for their aggregation into typical periods. Each aggregation method is applied to a different type of energy system model, making the methods fairly incomparable.To overcome this, the different aggregation methods are first extended so that they can be applied to all types of multidimensional time series and then compared by applying them to different energy system configurations and analyzing their impact on the cost optimal design.It was found that regardless of the method, time series aggregation allows for significantly reduced computational resources. Nevertheless, averaged values lead to underestimation of the real system cost in comparison to the use of representative periods from the original time series. The aggregation method itself e.g., k-means clustering plays a minor role. More significant is the system considered: Energy systems utilizing centralized resources require fewer typical periods for a feasible system design in comparison to systems with a higher share of renewable feed-in. Furthermore, for energy systems based on seasonal storage, currently existing models integration of typical periods is not suitable.
000834295 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000834295 588__ $$aDataset connected to CrossRef
000834295 7001_ $$0P:(DE-Juel1)130471$$aMarkewitz, Peter$$b1
000834295 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b2
000834295 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3
000834295 773__ $$0PERI:(DE-600)2710810-7$$a10.1016/j.renene.2017.10.017$$gVol. 117, p. 474 - 487$$p474 - 487$$tRenewable energy$$v117$$x1309-0127$$y2017
000834295 8564_ $$uhttps://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.pdf$$yRestricted
000834295 8564_ $$uhttps://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.gif?subformat=icon$$xicon$$yRestricted
000834295 8564_ $$uhttps://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834295 8564_ $$uhttps://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834295 8564_ $$uhttps://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834295 8564_ $$uhttps://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834295 909CO $$ooai:juser.fz-juelich.de:834295$$pVDB
000834295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168451$$aForschungszentrum Jülich$$b0$$kFZJ
000834295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130471$$aForschungszentrum Jülich$$b1$$kFZJ
000834295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b2$$kFZJ
000834295 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
000834295 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000834295 9141_ $$y2017
000834295 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834295 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834295 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000834295 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834295 920__ $$lyes
000834295 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000834295 980__ $$ajournal
000834295 980__ $$aVDB
000834295 980__ $$aI:(DE-Juel1)IEK-3-20101013
000834295 980__ $$aUNRESTRICTED
000834295 981__ $$aI:(DE-Juel1)ICE-2-20101013