001     834295
005     20240711101503.0
024 7 _ |a 10.1016/j.renene.2017.10.017
|2 doi
024 7 _ |a 0960-1481
|2 ISSN
024 7 _ |a 1879-0682
|2 ISSN
024 7 _ |a WOS:000416498700040
|2 WOS
024 7 _ |a altmetric:23355132
|2 altmetric
037 _ _ |a FZJ-2017-04277
082 _ _ |a 333.7
100 1 _ |a Kotzur, Leander
|0 P:(DE-Juel1)168451
|b 0
|e Corresponding author
245 _ _ |a Impact of Different Time Series Aggregation Methods on Optimal Energy System Design
260 _ _ |a [Ankara]
|c 2017
|b Gazi Univ., Fac. of Technology, Dep. of Electrical & Electronics Eng.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515596197_4332
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Modeling renewable energy systems is a computationally-demanding task due to the high fluctuation of supply and demand time series. To reduce the scale of these, this paper discusses different methods for their aggregation into typical periods. Each aggregation method is applied to a different type of energy system model, making the methods fairly incomparable.To overcome this, the different aggregation methods are first extended so that they can be applied to all types of multidimensional time series and then compared by applying them to different energy system configurations and analyzing their impact on the cost optimal design.It was found that regardless of the method, time series aggregation allows for significantly reduced computational resources. Nevertheless, averaged values lead to underestimation of the real system cost in comparison to the use of representative periods from the original time series. The aggregation method itself e.g., k-means clustering plays a minor role. More significant is the system considered: Energy systems utilizing centralized resources require fewer typical periods for a feasible system design in comparison to systems with a higher share of renewable feed-in. Furthermore, for energy systems based on seasonal storage, currently existing models integration of typical periods is not suitable.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Markewitz, Peter
|0 P:(DE-Juel1)130471
|b 1
700 1 _ |a Robinius, Martin
|0 P:(DE-Juel1)156460
|b 2
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 3
773 _ _ |a 10.1016/j.renene.2017.10.017
|g Vol. 117, p. 474 - 487
|0 PERI:(DE-600)2710810-7
|p 474 - 487
|t Renewable energy
|v 117
|y 2017
|x 1309-0127
856 4 _ |u https://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834295/files/1-s2.0-S0960148117309783-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834295
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168451
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21