001     834300
005     20241127124646.0
024 7 _ |a 10.1016/j.ijhydene.2017.05.230
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000406725500004
|2 WOS
037 _ _ |a FZJ-2017-04282
082 _ _ |a 660
100 1 _ |a Peters, Ralf
|0 P:(DE-Juel1)129902
|b 0
|e Corresponding author
245 _ _ |a Spray Formation of Middle Destillates for Autothermal Reforming
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515579359_18136
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The reforming of diesel and diesel-like fuels plays a central role in the development of fuel cell systems for on-board power supplies. The vaporization of the fuel via a spray formation and the subsequent mixture with water vapor and air determine the quality of the reforming process, as is shown in this paper. By using a high quality nozzle residual hydrocarbons were below 25 ppmV during the reforming of standard diesel. Through the use of a fuel injector in pulsed operation, the load range was able to be increased from 1:1.67 to 1:6. Spray pattern analyses were conducted using a high-speed camera. The formation of the spray pattern lasted 1.5–2 ms. The testing of a fast-closing magnetic valve manufactured by GSR Ventiltechnik was carried out on the autothermal reformer (ATR) type AH2. It exist not any direct influence of the pulsed operation on hydrogen production.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pasel, Joachim
|0 P:(DE-Juel1)129898
|b 1
700 1 _ |a Samsun, Remzi Can
|0 P:(DE-Juel1)207065
|b 2
700 1 _ |a Scharf, Florian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tschauder, Andreas
|0 P:(DE-Juel1)129935
|b 4
700 1 _ |a Müller, Michael
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Müller, Axel
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Beer, Michael
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 8
773 _ _ |a 10.1016/j.ijhydene.2017.05.230
|g Vol. 42, no. 27, p. 16946 - 16960
|0 PERI:(DE-600)1484487-4
|n 27
|p 16946 - 16960
|t International journal of hydrogen energy
|v 42
|y 2017
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/834300/files/1-s2.0-S0360319917322140-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834300/files/1-s2.0-S0360319917322140-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834300/files/1-s2.0-S0360319917322140-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834300/files/1-s2.0-S0360319917322140-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834300/files/1-s2.0-S0360319917322140-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/834300/files/1-s2.0-S0360319917322140-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:834300
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129898
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)207065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21