000834313 001__ 834313
000834313 005__ 20240711114045.0
000834313 0247_ $$2doi$$a10.1016/j.nme.2016.03.005
000834313 0247_ $$2Handle$$a2128/14734
000834313 0247_ $$2WOS$$aWOS:000391191500012
000834313 037__ $$aFZJ-2017-04292
000834313 082__ $$a333.7
000834313 1001_ $$0P:(DE-HGF)0$$aRiesch, J.$$b0$$eCorresponding author
000834313 245__ $$aChemically deposited tungsten fibre-reinforced tungsten – The way to a mock-up for divertor applications
000834313 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2016
000834313 3367_ $$2DRIVER$$aarticle
000834313 3367_ $$2DataCite$$aOutput Types/Journal article
000834313 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1498464189_10861
000834313 3367_ $$2BibTeX$$aARTICLE
000834313 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834313 3367_ $$00$$2EndNote$$aJournal Article
000834313 520__ $$aThe development of advanced materials is essential for sophisticated energy systems like a future fusion reactor. Tungsten fibre-reinforced tungsten composites (Wf/W) utilize extrinsic toughening mechanisms and therefore overcome the intrinsic brittleness of tungsten at low temperature and its sensitivity to operational embrittlement. This material has been successfully produced and tested during the last years and the focus is now put on the technological realisation for the use in plasma facing components of fusion devices. In this contribution, we present a way to utilize Wf/W composites for divertor applications by a fabrication route based on the chemical vapour deposition (CVD) of tungsten. Mock-ups based on the ITER typical design can be realized by the implementation of Wf/W tiles. A concept based on a layered deposition approach allows the production of such tiles in the required geometry. One fibre layer after the other is positioned and ingrown into the W-matrix until the final sample size is reached. Charpy impact tests on these samples showed an increased fracture energy mainly due to the ductile deformation of the tungsten fibres. The use of Wf/W could broaden the operation temperature window of tungsten significantly and mitigate problems of deep cracking occurring typically in cyclic high heat flux loading. Textile techniques are utilized to optimise the tungsten wire positioning and process speed of preform production. A new device dedicated to the chemical deposition of W enhances significantly, the available machine time for processing and optimisation. Modelling shows that good deposition results are achievable by the use of a convectional flow and a directed temperature profile in an infiltration process.
000834313 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000834313 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000834313 588__ $$aDataset connected to CrossRef
000834313 7001_ $$0P:(DE-Juel1)166204$$aAumann, M.$$b1
000834313 7001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b2$$eCorresponding author
000834313 7001_ $$0P:(DE-HGF)0$$aGietl, H.$$b3
000834313 7001_ $$0P:(DE-HGF)0$$aHolzner, G.$$b4
000834313 7001_ $$0P:(DE-HGF)0$$aHöschen, T.$$b5
000834313 7001_ $$0P:(DE-HGF)0$$aHuber, P.$$b6
000834313 7001_ $$0P:(DE-HGF)0$$aLi, M.$$b7
000834313 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b8
000834313 7001_ $$0P:(DE-HGF)0$$aNeu, R.$$b9
000834313 773__ $$0PERI:(DE-600)2808888-8$$a10.1016/j.nme.2016.03.005$$gVol. 9, p. 75 - 83$$p75 - 83$$tNuclear materials and energy$$v9$$x2352-1791$$y2016
000834313 8564_ $$uhttps://juser.fz-juelich.de/record/834313/files/1-s2.0-S2352179115301344-main.pdf$$yOpenAccess
000834313 8564_ $$uhttps://juser.fz-juelich.de/record/834313/files/1-s2.0-S2352179115301344-main.gif?subformat=icon$$xicon$$yOpenAccess
000834313 8564_ $$uhttps://juser.fz-juelich.de/record/834313/files/1-s2.0-S2352179115301344-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000834313 8564_ $$uhttps://juser.fz-juelich.de/record/834313/files/1-s2.0-S2352179115301344-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000834313 8564_ $$uhttps://juser.fz-juelich.de/record/834313/files/1-s2.0-S2352179115301344-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000834313 8564_ $$uhttps://juser.fz-juelich.de/record/834313/files/1-s2.0-S2352179115301344-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000834313 909CO $$ooai:juser.fz-juelich.de:834313$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000834313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b2$$kFZJ
000834313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b8$$kFZJ
000834313 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000834313 9141_ $$y2017
000834313 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834313 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000834313 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000834313 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000834313 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834313 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000834313 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000834313 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834313 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000834313 9801_ $$aFullTexts
000834313 980__ $$ajournal
000834313 980__ $$aVDB
000834313 980__ $$aUNRESTRICTED
000834313 980__ $$aI:(DE-Juel1)IEK-4-20101013
000834313 981__ $$aI:(DE-Juel1)IFN-1-20101013