001 | 834319 | ||
005 | 20240711114045.0 | ||
024 | 7 | _ | |2 doi |a 10.1088/1741-4326/aa69dd |
024 | 7 | _ | |2 ISSN |a 0029-5515 |
024 | 7 | _ | |2 ISSN |a 1741-4326 |
024 | 7 | _ | |2 Handle |a 2128/14737 |
024 | 7 | _ | |a WOS:000425870200002 |2 WOS |
024 | 7 | _ | |a altmetric:19614984 |2 altmetric |
037 | _ | _ | |a FZJ-2017-04298 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |0 P:(DE-Juel1)5247 |a Wiesen, S. |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Impact of the JET ITER-like wall on H-mode plasma fueling |
260 | _ | _ | |a Vienna |b IAEA |c 2017 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1498464940_10865 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a JET ITER-like wall (ILW) experiments show that the edge density evolution is strongly linked with the poloidal distribution of the ionization source. The fueling profile in the JET-ILW is more delocalized as compared to JET-C (JET with carbon-based plasma-facing components PFCs). Compared to JET-C the H-mode pedestal fueling cycle is dynamically influenced by a combination of plasma–wall interaction features, in particular: (1) edge-localized modes (ELMs) induced energetic particles are kinetically reflected on W divertor PFCs leading to distributed refueling away from the divertor depending on the divertor plasma configuration, (2) delayed molecular re-emission and outgassing of particles being trapped in W PFCs (bulk-W at the high field side and W-coated CFCs at the low field side) with different fuel content and (3) outgassing from Be co-deposits located on top of the high-field side baffle region shortly after the ELM. In view of the results of a set of well diagnosed series of JET-ILW type-I ELMy H-mode discharges with good statistics, the aforementioned effects are discussed in view of H-mode pedestal fueling capacity. The ongoing modelling activities with the focus on coupled core-edge plasma simulations and plasma–wall interaction are described and discussed also in view of possible code improvements required. |
536 | _ | _ | |0 G:(DE-HGF)POF3-174 |a 174 - Plasma-Wall-Interaction (POF3-174) |c POF3-174 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |0 P:(DE-Juel1)129976 |a Brezinsek, S. |b 1 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Wischmeier, M. |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a De la Luna, E. |b 3 |
700 | 1 | _ | |0 P:(DE-Juel1)171218 |a Groth, M. |b 4 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Jaervinen, A. E. |b 5 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a de la Cal, E. |b 6 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Losada, U. |b 7 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a de Aguilera, A. M. |b 8 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Frassinetti, L. |b 9 |
700 | 1 | _ | |0 P:(DE-Juel1)161317 |a Gao, Y. |b 10 |u fzj |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Guillemaut, C. |b 11 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Harting, D. |b 12 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Meigs, A. |b 13 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schmid, K. |b 14 |
700 | 1 | _ | |0 P:(DE-Juel1)130158 |a Sergienko, G. |b 15 |u fzj |
773 | _ | _ | |0 PERI:(DE-600)2037980-8 |a 10.1088/1741-4326/aa69dd |g Vol. 57, no. 6, p. 066024 - |n 6 |p 066024 - |t Nuclear fusion |v 57 |x 1741-4326 |y 2017 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/834319/files/Wiesen_2017_Nucl._Fusion_57_066024.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/834319/files/Wiesen_2017_Nucl._Fusion_57_066024.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:834319 |p openaire |p open_access |p OpenAPC |p driver |p VDB |p openCost |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)5247 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)129976 |a Forschungszentrum Jülich |b 1 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)171218 |a Forschungszentrum Jülich |b 4 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)161317 |a Forschungszentrum Jülich |b 10 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)130158 |a Forschungszentrum Jülich |b 15 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF3-174 |1 G:(DE-HGF)POF3-170 |2 G:(DE-HGF)POF3-100 |a DE-HGF |l Kernfusion |v Plasma-Wall-Interaction |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |a Creative Commons Attribution CC BY 3.0 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0600 |2 StatID |a DBCoverage |b Ebsco Academic Search |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |b NUCL FUSION : 2015 |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)9900 |2 StatID |a IF < 5 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 StatID:(DE-HGF)0030 |2 StatID |a Peer Review |b ASC |
915 | _ | _ | |0 StatID:(DE-HGF)1150 |2 StatID |a DBCoverage |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)0430 |2 StatID |a National-Konsortium |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-4-20101013 |k IEK-4 |l Plasmaphysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-4-20101013 |
980 | _ | _ | |a APC |
981 | _ | _ | |a I:(DE-Juel1)IFN-1-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|