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Solution of the Lindblad equation for spin helix states
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Using Lindblad dynamics we study quantum spin systems with dissipative boundary dynamics that generate a
stationary nonequilibrium state with a nonvanishing spin current that is locally conserved except at the boundaries.
We demonstrate that with suitably chosen boundary target states one can solve the many-body Lindblad equation
exactly in any dimension. As solution we obtain pure states at any finite value of the dissipation strength and
any system size. They are characterized by a helical stationary magnetization profile and a ballistic spin current
which is independent of system size, even when the quantum spin system is not integrable. These results are
derived in explicit form for the one-dimensional spin-1/2 Heisenberg chain and its higher-spin generalizations,
which include the integrable spin-1 Zamolodchikov-Fateev model and the biquadratic Heisenberg chain.
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I. INTRODUCTION

A question of considerable interest in the context of
one-dimensional transport phenomena is the magnitude of
stationary currents in boundary-driven quantum spin systems
as a function of system size N . In the case of normal (diffusive)
transport, a current j is asymptotically proportional to 1/N ,
while for ballistic transport the current approaches a nonzero
constant even in the thermodynamic limit N → ∞. In one
dimension this behavior is a hallmark of integrable systems
and manifests itself in a finite Drude weight [1,2]. A way to
measure this quantity experimentally in such systems has been
proposed recently [3].

We address the relationship between the nature of the
boundary driving, integrability, and transport properties by
studying boundary-driven quantum spin chains in the by now
theoretically well-established and experimentally accessible
framework of nonequilibrium Lindblad dynamics [4,5]. In
this approach, presented in some more detail below, the time
evolution is given by a quantum master equation that preserves
the trace, positivity, and hermiticity of the density matrix but
contains a nonunitary part that models a dissipative coupling
of a quantum system to its environment and thus allows for
the description of stationary current-carrying quantum states
far from thermal equilibrium.

We explore conditions on the boundary driving under which
transport in a quantum spin system can become ballistic. It
turns out that such behavior arises in stationary states in which
the current is associated with a multiple spin rotation along
the direction of driving with a winding number that is of the
order of the number of spin carriers in the chain. We shall
call such superdiffusive nonequilibrium stationary states “spin
helix states” (SHS), in analogy to phenomena in spin-orbit-
coupled two-dimensional electron systems [6–8]. We focus
on one-dimensional spin chains, which are of great current
interest. However, it will transpire that analogous SHS will
appear also in higher dimensions with an appropriate choice
of Lindblad boundary driving.

*popkov@uni-bonn.de
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The one-dimensional SHS generalizes the asymptotic
state in the isotropic Heisenberg chain (XXX chain) in the
thermodynamic limit N → ∞ that was found recently [9,10],
which is, in turn, reminiscent of the helical ground state of the
classical isotropic Heisenberg spin chain with boundary fields
and its formal analog of ferromagnetic quantum domains in
the Heisenberg quantum chain [11,12]. The novelty of the SHS
is the occurrence of a nonzero winding number in the helical
state that turns out to be responsible for the ballistic transport.

Mainly we are interested in exact SHSs in the experi-
mentally relevant chains of finite length. However, we shall
also present numerical results away from the exactly solvable
points that highlight the specific features of the exact SHS.
Interestingly, these SHS are pure states, which is unusual for
solutions of a many-body Lindblad equation. These states
arise in the regime |�| < 1 for the anisotropy parameter of
the spin-s chain. For the ground state of the spin-1/2 XXZ
Heisenberg chain this is the quantum critical regime, unlike the
ferromagnetic regime � � 1 studied in [12], which exhibits
a mathematically somewhat analogous but physically very
different behavior. Notice that the nonequilibrium stationary
state of a dissipatively boundary-driven XXZ chain was
argued to converge to the SHS in the Zeno limit of infinitely
large boundary dissipation [13,14]. Here we show how the
SHS is produced at arbitrary finite dissipative strength.

The paper is organized as follows. To be concrete, we first
consider in Sec. II the anisotropic spin-1/2 Heisenberg chain.
We define the SHS and derive the conditions under which exact
SHSs arise with judiciously chosen Lindblad dissipators. In
Sec. III we discuss in some detail transport properties of the
spin-1/2 SHS and compare with transport in non-SHS states.
Then we go on to generalize the approach to higher-spin chains
(Sec. IV) and discuss some classical analogies. In Sec. V we
draw some conclusions.

II. SPIN HELIX STATES IN THE SPIN-1/2 X X Z CHAIN

The spin-1/2 XXZ chain is defined by the Hamiltonian [15]

H =
N−1∑
k=1

hk (1)
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with local interaction matrices hk given in terms of Pauli spin-
1/2 matrices by

hk = J
[
σx

k σ x
k+1 + σ

y

k σ
y

k+1 + �(σ z
k σ z

k+1 − 1)
]

(2)

= 2J [σ+
k σ−

k+1 + σ−
k σ+

k+1 − cos η(n̂kv̂k+1 + v̂kn̂k+1)].

(3)

Here � = cos η is the anisotropy parameter, and in the second
representation we have used the local projectors

n̂k = 1
2

(
1 − σ z

k

)
, v̂k = 1

2

(
1 + σ z

k

)
, (4)

and the spin raising and lowering operators σ±
k = (σx

k ±
iσ

y

k )/2. We recall that the Pauli matrices satisfy the SU(2)
commutation relations [σα

k , σ
β

l ] = 2iδk,l

∑3
γ=1 εαβγ σ

γ

k , where
εαβγ is the totally antisymmetric Levi-Civita symbol with
ε123 = 1.

The object of interest is the density matrix ρ in a boundary-
driven nonequilibrium situation where stationary currents
arise from the coupling of the left and right boundary sites
1 and N to an environment which projects the boundary
spins in different directions. The density matrix ρ of the
nonequilibrium steady state (NESS) is determined by the
stationary Lindblad equation [4,5]

0 = d

dt
ρ = −i[H, ρ] + DL(ρ) + DR(ρ), (5)

with boundary dissipators Dj , j ∈ {L,R} acting on the density
matrix as

Dj (ρ) = DjρD
†
j − 1

2 {D†
jDj ,ρ}. (6)

The Lindblad operators Dj , which encode the nature of the
boundary driving, are specified below. Stationary expectations
〈O 〉 of physical observables O are then given by the trace
〈O 〉 = Tr(Oρ). Our main interest will be in the magnetic
moments �mk at site k of the chain. For convenience we ignore
material-dependent factors and choose units such that �mk =
〈 �σk 〉.

In the absence of the unitary part given by the spin chain
Hamiltonian H , the nonunitary dissipative part given by the
dissipators Dj forces the system locally at the respective left
(L) or right (R) boundary site into some target state. Thus, if the
two target states are different, stationary currents associated
with local bulk-conserved degrees of freedom are generally
expected to flow due to the action of the unitary bulk part of
the Lindblad equation.

A. The spin-1/2 helix state

For many problems of interest, the quantum master equa-
tion (5) admits an exact solution in which the stationary density
matrix is expressed in matrix product form [16,17]. Here we
take a different approach and make a pure-state ansatz

ρ = |�〉〈�| (7)

with the product state

|�〉 = |φ1〉 ⊗ · · · ⊗ |φN 〉. (8)

This means that we can write

ρ = |φ1〉〈φ1| ⊗ · · · ⊗ |φN 〉〈φN |. (9)

We take the basis where the z components σ z
k of the local spin

operator are all diagonal and choose

|φk〉 = 1√
|a|2 + |b|2

(
a e−i 1

2 φk

b ei 1
2 φk

)
(10)

with the local phase angle

φk = ϕk (11)

where 0 � ϕ < 2π .
With the parametrization a = eiϕB/2, b = re−iϕB/2 the

magnetization profiles mα
k := 〈 σα

k 〉/2, i.e., the α components
of the dimensionless magnetic moments, are given by

mx
k = r

1 + r2
cos (ϕk − ϕB), m

y

k = r

1 + r2
sin (ϕk − ϕB),

mz
k = 1

2

1 − r2

1 + r2
. (12)

One recognizes in ϕ the twist angle between neighboring
spins in the xy plane. Therefore we refer to the pure density
matrix (9) specified by the properties (10) and (11) as a spin
helix state (SHS).

The quantity ϕ(N − 1) yields the twist angle between
boundary target polarizations in the xy plane. Hence any
ϕ ∈ [0,2π [ of the form

ϕ = � + 2πK

N − 1
(13)

with 0 � � < 2π and 0 � K < N − 1 gives rise to the same
spin rotation between the boundary spins by the angle � in
the xy plane. We shall refer to � as the boundary twist and to
K as the (clockwise) winding number of the spin helix [18].
Without loss of generality we fix the phase ϕB = ϕ, which
corresponds to a choice of the coordinate system such that the
planar spin component at site 1 points into the x direction.
The left target state at site 1 is then the local density matrix
ρL = (v̂ + r2n̂ + rσ x)/(1 + r2) and the right target state is
given by ρR = [v̂ + r2n̂ + r cos (�)σx + r sin (�)σy]/(1 +
r2). For r = 1 the SHS is fully polarized in the xy plane
with perpendicular magnetization mz

k = 0 along the chain.
Due to the factorized structure of the SHS there are no spin
correlations between different sites.

Thermal-like properties of this NESS can be characterized
by the bond energy density εk := 〈hk〉. From the factorization
property (9) and the explicit form of the local magnetiza-
tions (12) one finds that the bond energy density is spatially
constant and given by

ε = J

[(
2r

1 + r2

)2

cos ϕ + �

((
1 − r2

1 + r2

)2

− 1

)]
. (14)

Due do the factorized structure of the SHS there are no energy
correlations between non-neighboring bonds.

Finally, we briefly comment on the large-scale properties
of the SHS in terms of a classical description based on
fluctuating hydrodynamics, which has become a topic of
great current interest. Generically, the correlations between
the z component of the spins in the boundary-driven XXZ

chain are long-ranged, at least for boundary twist angle
� = π [2,19,20]. As pointed out by these authors, the form
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of these correlation functions is remarkably reminiscent of
the universal density correlations in boundary-driven classical
particle systems, as predicted by the powerful theory of
fluctuating hydrodynamics [21–24] and a related additivity
principle [25]. This observation, along with other recent
progress on the current statistics [26] and on hydrodynamics
for quantum spin chains [27,28], is extremely encouraging,
as it suggests that some of the large-scale behavior of open
quantum systems can be understood in terms of classical
physics. Within a classical picture one could then be tempted
associate the complete absence of correlations in the SHS and
the flat energy profile along the chain as indicating proximity
of the SHS to some equilibrium state ρeff ∝ exp (−βeffH ),
where, following [29], a very high effective temperature would
be implicitly given by (14).

We caution, however, against such an interpretation, even
in the absence of any external twist ϕ = 0 when also the
magnetization profile is flat. First of all, the difference between
the SHS and a thermal density matrix at high temperature is
clear with regard to the quantum phenomenon of entanglement,
as the SHS is a pure state as opposed to a strongly mixed
high-temperature setting. Moreover, with regard to thermal
properties, we note that for ϕ = 0 one can actually write
the density matrix of the SHS in an exact thermal form
as ρ ∝ exp (−βeffHeff), with an effective Hamiltonian of
the form Heff = ∑

k(σ z
k + uσx

k ), which provides an exact
description of a subspace of the XXZ Hamiltonian H for
� = 0 [30]. However, this subspace does not capture any
significant physical property of the thermal density matrix ρ ∝
exp (−βeffH ) for any finite temperature. These observations
do not rule out a classical large-scale description of some
properties of current-carrying nonequilibrium steady states in
boundary-driven quantum spin chains, but indicate that even
for the simple factorized SHS such a description, if it exists,
cannot be expressed in terms of some effective temperature.

B. Construction of the boundary dissipators

Now we aim at deriving boundary dissipators which allow
for maintaining the SHS stationary in the finite XXZ chain.
To this end we first make a remark on pure-state solutions of
a general stationary Lindblad equation

L(ρ) = −i[H, ρ] +
∑

j

Dj (ρ) = 0, (15)

where here j belongs to some index set (not necessarily just
L and R). Let a pure state ρ = |�〉〈�| be the solution of (15).
Then |�〉 is an eigenvector of all the Lindblad operators Dj

and the Lindblad equation turns into the set of eigenvalue
problems

Dj |�〉 = λj |�〉, H̃ |�〉 = μ|�〉 (16)

with (in general complex) eigenvalues λj and (real) eigenvalue
μ of the shifted Hamiltonian

H̃ = H +
∑

j

i

2
(λ̄jDj − λjD

†
j ). (17)

This can be seen as follows [31,32]. Sandwich the Lindblad
equation (15) with |�〉. Then the unitary part involving the

commutator with H vanishes identically and one gets∑
j

(〈�|Dj |�〉〈�|D†
j |�〉 − 〈�|D†

jDj |�〉) = 0 (18)

for the dissipative part. By the Schwarz inequality (which
generally gives � 0 for the l.h.s.) the equality is realized if and
only if the eigenvalue property

Dj |�〉 = λj |�〉 (19)

holds for each dissipative term. Then the Lindblad dissipator
can be written as a commutator

Dj (ρ) = 1
2λj [ρ,D

†
j ] + 1

2 λ̄j [Dj, ρ]

= [
1
2 (λ̄jDj − λjD

†
j ), ρ

]
(20)

and the Lindblad equation becomes⎡
⎣H +

∑
j

i

2
(λ̄jDj − λjD

†
j ), ρ

⎤
⎦ = 0. (21)

Consider now the commutator [A, σ ] = 0 with a general tensor
matrix σ = |�〉〈� ′| such that 〈k|�〉 �= 0 and 〈� ′|l〉 �= 0 for
all orthonormal basis vectors |k〉, |l〉 of the separable Hilbert
space to which |�〉 and |� ′〉 belong. Sandwiching with 〈k| and
|l〉 yields

〈k|A|�〉〈� ′|l〉 = 〈k|�〉〈� ′|A|l〉 (22)

or, equivalently,

〈k|A|�〉
〈k|�〉 = 〈� ′|A|l〉

〈� ′|l〉 ∀k,l. (23)

Hence

〈k|A|�〉 = μ〈k|�〉, 〈� ′|A|k〉 = μ〈� ′|k〉 ∀k (24)

with the same constant μ. This implies

A|�〉 = μ|�〉, 〈� ′|A = μ〈� ′|. (25)

This proves (16) for any pure state. Conversely, if (16) holds for
some vector |�〉 then the pure state ρ = |�〉〈�| is a solution
of the original Lindblad equation (15).

Now we apply this property to the SHS defined by (9)
with (10), (11), which we require to satisfy the stationarity
condition (5) with boundary Lindblad operators DL,R . Notice
that one can write the interaction terms hk of the XXZ

Hamiltonian (1) as

hk = ek(η) + i sin η
(
σ z

k+1 − σ z
k

)
= ek(−η) − i sin η

(
σ z

k+1 − σ z
k

)
(26)

with

ek(η) = 2J (σ+
k σ−

k+1 + σ−
k σ+

k+1 − eiηn̂kv̂k+1 − e−iηv̂kn̂k+1).

(27)

This fact allows us to write

H = G(η) + iJ sin η
(
σ z

N − σ z
1

)
= G(−η) − iJ sin η

(
σ z

N − σ z
1

)
(28)

with G(η) = ∑N−1
k=1 ek(η).
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Remarkably, for the relation

η = ϕ (29)

between the twist angle ϕ of the SHS and the anisotropy η of
the XXZ chain one has

ek(ϕ)|�〉 = 0, 〈�|ek(−ϕ) = 0. (30)

This implies G(ϕ)|�〉 = 0 and 〈�|G(−ϕ) = 0 and therefore

H |�〉 = iJ sin ϕ
(
σ z

N − σ z
1

)|�〉,
(31)

〈�|H = −iJ sin ϕ〈�|(σ z
N − σ z

1

)
.

To proceed and construct suitable Lindblad operators DL,R

it is convenient to define for subscript j ∈ {L,R} the shifted
Lindblad operators

D̃j = Dj − λj . (32)

We also note that we can write the shifted Hamiltonian (17) as

H̃ = H +
∑

j∈{L,R}

i

2
(λ̄j D̃j − λj D̃

†
j ). (33)

The constants λj are to be determined. According to (16) this
implies that one has to solve

D̃L|�〉 = D̃R|�〉 = 0 (34)

and

〈�|
[
−iJ sin (ϕ)

(
σ z

N − σ z
1

) + i

2
(λ̄LD̃L + λ̄RD̃R)

]
= μ〈�|, (35)

with μ ∈ R. Here we used that (34) is equivalent to 〈�|D̃†
i = 0.

This allows us to split these four equations into two pairs of
equations for each boundary:

D̃L|�〉 = 0, 〈�|
(

iJ sin (ϕ)σ z
1 + i

2
λ̄LD̃L

)
= μL〈�|,

(36)

D̃R|�〉 = 0, 〈�|
(

−iJ sin (ϕ)σ z
N + i

2
λ̄RD̃R

)
= μR〈�|, (37)

with μL = (μ + iν)/2 arbitrary and μR = μ̄L so that μL +
μR = μ ∈ R as required by (16). The real-valued constants
μ,ν can be computed by multiplying from the right by |�〉.
Using (12) yields

μL = iJ sin (ϕ)
1 − r2

1 + r2
= −μR (38)

and therefore μ = 0, ν = jz. For full planar polarization this
reduces to μL = μR = 0.

Requiring the left dissipator DL to act nontrivially on the
left boundary site 1, one finds from the first eigenvalue equation
in (36) that

D̃L =
(

rαL −αL

rβL −βL

)
1

= αL(rv̂1 − σ+
1 ) − βL(n̂1 − rσ−

1 )

(39)

with arbitrary constants αL,βL. Then the second equation
in (36) is solved by

λ̄L = − 4rJ sin ϕ

(1 + r2)(αL + rβL)
. (40)

For the right boundary the eigenvalue equation D̃R|�〉 = 0
in (37) gives

D̃R = e−i
(N−1)ϕ

2 σ z
N

(
rαR −αR

rβR −βR

)
N

ei
(N−1)ϕ

2 σ z
N

= αR(rv̂N − e−i�σ+
N ) − βR(n̂N − rei�σ−

N ), (41)

with arbitrary constants αR,βR . From the second equation
in (37) one then obtains

λ̄R = 4rJ sin ϕ

(1 + r2)(αR + rβR)
. (42)

Thus the SHS is stationary under the action of a two-parameter
family of boundary dissipators with Lindblad operators Dj =
D̃j + λj .

III. TRANSPORT PROPERTIES OF THE SHS

We treat both spin and energy transport, the emphasis being
on spin transport.

A. Spin transport in the SHS

The z component of the total magnetization is conserved
under the unitary part of the time evolution. The associated
conserved spin current is defined by the continuity equation
through the time derivative of the magnetization profile
ṁz

k = jz
k−1 − jz

k . Since ṁz
k = i〈[H,σ z

k ]〉/2 one gets from the
commutation relations of the Pauli matrices the current
operator

ĵ z
k = J

(
σx

k σ
y

k+1 − σ
y

k σ x
k+1

)
. (43)

In the stationary state the current jz := 〈ĵ z
k 〉 does not depend

on k and it is of interest to investigate its properties in the
SHS. Strictly speaking, the SHS as defined above arises as a
stationary solution of the Lindblad equation for a finite chain
only in the regime |�| < 1 of the XXZ chain. However, as
shown below, it appears asymptotically also in the isotropic
Heisenberg chain with � = 1 and it has a (nonhelical) analog
in the ferromagnetic regime � > 1. We discuss these cases
separately.

1. Helical regime |�| < 1

The factorized form of the SHS defined by (9)–(11) yields

jz = J
4r2

(1 + r2)2
sin ϕ, (44)

which even in a large system is of order 1 for macroscopic
winding numbers of order N . Interestingly, in contrast to
the classical relation between a locally conserved current and
boundary gradients of the associated conserved quantity, for
any winding number there is a current even though there is no
gradient �mz := mz

1 − mz
N = 0 between the z magnetizations

of the boundaries. Moreover, the behavior of the SHS is
also in contrast to the situation where the XXZ chain is

042128-4



SOLUTION OF THE LINDBLAD EQUATION FOR SPIN . . . PHYSICAL REVIEW E 95, 042128 (2017)

driven by two Lindblad operators at each boundary into a
state close to an infinite-temperature thermal state [33]. In this
case, the effective diffusion coefficient Dz

eff ∝ Ljz/�mz was
found numerically for chains up to more than 200 sites to be
proportional to L (corresponding to ballistic transport) with a
coefficient of proportionality that depends on the anisotropy
�. Theoretically, a ballistic spin current in this regime was
proved by calculating the lower bound for a respective Drude
weight (see Ref. [2]).

The spin transport of the SHS is, in fact, reminiscent of
the persistent current j in a mesoscopic ring threaded by a
magnetic flux � [34,35]. At zero temperature one has

j = −∂E0

∂�
(45)

and the Drude weight is given by the spin stiffness [36]

D = L
∂2E0

∂�2
|�=�m

, (46)

where E0 is the ground-state energy and �m is the value of
� that minimizes E0(�). Substituting the ground-state energy
E0 of the ring by the energy density (14) times the chain length
L = N − 1 (in lattice units) of the SHS, i.e., E0 → (N − 1)ε,
identifying the flux � with the magnitude of the boundary
twist, and keeping � fixed when taking the derivative w.r.t. �,
one finds from (45) that j = jz as given by (44) and then (46)
gives DSHS = |J | > 0, indicating infinite dc conductivity.

Expressions for finite temperature analogous to (45)
and (46) are derived in [37], and it was conjectured that a finite
Drude weight at nonzero temperature is a generic property
of integrable systems. Thus the nonthermal (but certainly not
zero-temperature) SHS of the integrable XXZ chain appears
to fit into the picture relating the Drude weight obtained
via (46), infinite dc conductivity, and integrability [1,2,38,39].
The Drude weight DSHS, however, does not depend on the
anisotropy �, unlike the thermal Drude weight [36,40,41].
More significantly, however, it will be shown below that
the ballistic transport in the SHS is, in fact, unrelated to
integrability.

2. Isotropic point |�| = 1

At the isotropic point � = 1 where η = 0 and the matching
condition (29) yields a trivial constant SHS with twist angle
� = 0 and winding number K = 0. However, it is interesting
to look at the magnetization profiles (12) and the spin
current (44) with the boundary-driven isotropic XXX chain,
corresponding to a nonzero boundary twist θ �= 0 in the xy

plane. It was shown in [9,10] that the boundary target states and
the magnetization profiles for large N are of the form (12) with
ϕ = θ/(N − 1) and r = 1. Thus this nonequilibrium steady
state of the XXX chain is a SHS in the thermodynamic limit
with winding number K = 0 and boundary twist � = θ .

The z component of the spin current in the XXX chain
is asymptotically given by jz ≈ Jθ/N [10], which agrees
with (44) for ϕ = θ/(N − 1) and large N [42]. Moreover,
one can show that in the XXX case one has �mz :=
mz

1 − mz
N = O(1/N), indicating ballistic transport of the z

component of the spin in the XXX chain, since the effective
diffusion coefficient Dz

eff = Njz/(�mz) is proportional to
system size N . This is consistent with the observation of

infinite conductivity in the SHS of the XXZ chain obtained
above from the Drude weight (46), which is finite also for
� = 1 [43].

However, the ballistic transport in the SHS of the XXX

chain is in contrast to the transport properties both of the
canonical ensemble for which it has been shown that the spin
stiffness of the periodic XXX chain at zero z magnetization
vanishes at any positive temperature [44], and of the “infinite-
temperature” XXX chain with two Lindblad operators at each
boundary, reported in [29]. According to exact numerical
calculations for short chains up to ∼ 10 sites, the diffusion
coefficient seems to diverge superdiffusively with system
size as Dz

eff =∝ N1/2 in this rather different setting. This is
remarkable, as it implies that the microscopic details of the
Lindblad boundary dissipators may determine fundamentally
qualitative properties of the bulk.

3. Ferromagnetic coupling � > 1

The Heisenberg Hamiltonian with J < 0 and � > 1 (corre-
sponding to a purely imaginary anisotropy parameter iη) has a
degenerate ferromagnetic ground state with all spins aligned in
positive or negative z direction, corresponding to the SHS with
r = 0 or r = ∞, respectively. We note, however, that the SHS
with r finite can be defined also for purely imaginary ϕ and
therefore the matching condition (29) can be met for � > 1.
However, this state is not a helix state. Substituting ϕ → iη

and parametrizing r = exp (u∗Nη + iφ0), one obtains for the
Heisenberg chain (1) with � = cosh η a fully polarized state
with vanishing spin current jz and the magnetization profiles
given by

〈
σx

k

〉 = cos φ0

cosh (ηk̃)
,

〈
σ

y

k

〉 = sin φ0

cosh (ηk̃)
,

〈
σ z

k

〉 = tanh (ηk̃), (47)

where k̃ = k − u0N .
This is the domain wall state of the XXZ chain with opposite

boundary fields in z direction [12], with a left domain of
negatively aligned spins and a right domain with positively
aligned spins. For N � 1/η2 the domain wall between positive
and negative aligned spins is located at u0N , provided that
0 < u0 < N . Otherwise, one has a boundary layer with a
width of order 1/η. Only in a region of size O(1/η2) near
the domain wall does one have for large N a non-negligible
transverse magnetization m

x,y

k . This domain wall state has a
direct classical analog as a stationary traffic jam state of the
asymmetric simple exclusion process with reflecting boundary
conditions [45,46], since for � > 1 the XXZ Hamiltonian
coincides with the generator of this stochastic interacting
particle system [47]. Note that also the state (47) can be
dissipatively obtained for infinite dissipation strength in a
XXZ chain with fine-tuned anisotropy � = cosh η [13].

B. Energy transport in the SHS

The operator for the locally conserved energy current ĵ E
k

associated with bond (k,k + 1) is defined by the continu-
ity equation ḣk = i[H,hk] = ĵ E

k − ĵ E
k+1, which yields ĵ E

k =
i[hk−1, hk] [48,49]. Using the commutation relations of the
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Pauli matrices one finds

ĵ E
k = 2J 2

( − σx
k−1σ

z
k σ

y

k+1 + �σx
k−1σ

y

k σ z
k+1 + σ

y

k−1σ
z
k σ x

k+1

−�σ
y

k−1σ
x
k σ z

k+1 − �σz
k−1σ

y

k σ x
k+1 + �σz

k−1σ
x
k σ

y

k+1

)
.

(48)

The energy current jE = 〈ĵ E
k 〉 then follows from the factorized

structure (8) of the SHS and the magnetization profiles (12).
Somewhat surprisingly,

jE = J 2 8r2(1 − r2)

(1 + r2)3
(2� sin ϕ − sin 2ϕ) = 0, (49)

since � = cos ϕ in the SHS. This is consistent with the
constant bond energy along the chain (implying the absence
of a energy gradient between the boundaries), but is never-
theless not completely obvious since (a) from a microscopic
perspective it is not a priori clear that the dissipators would
not generate an energy current and (b) the total energy current∑

k ĵE
k in a periodic chain is a conserved charge of the

integrable periodic XXZ chain [48,49] and hence ballistic
transport of energy is generic.

C. Numerical results

Now we explore numerically on a concrete example the
predicted special properties of the spin helix state as opposed
to a generic nonequilibrium state that arises as a solution
of the Lindblad equation (5) with Lindblad operators whose
parameters do not satisfy the matching condition (29) and
conditions (39)–(42) for the Lindblad operators. We focus on
the fully polarized SHS with r = 1 and fix the Heisenberg
exchange coupling J = 1.

For the numerically exact solution of the Lindblad equation
we consider an XXZ chain of four sites. For the Lindblad
operators we take αL = βL = αR = βR = √

� > 0 so that

DL =
√

�
(
εLI − σ z

1 + iσ
y

1

)
,

(50)
DR =

√
�
(
εRI − σ z

N + i cos �σ
y

N − i sin �σx
N

)
.

For N = 4 we take ϕ = 2π/3, corresponding to winding
number K = 2 and a zero boundary twist angle � = 0 in the
xy plane. By fixing εR = −εL = 0.05 the variable � becomes
a measure for the dissipative strength. The pure SHS (9)–(11)
is then a stationary solution of the Lindblad equation (5) for

η = ϕ, � = sin ϕ

|εR| = 20 sin ϕ. (51)

For the purpose of the numerical investigation we do not
require these equations to be satisfied and study the purity
of the solution of (5) and the corresponding stationary current
jz as a function of the anisotropy � = cos η and the dissipative
strength �.

As a measure for the purity of the nonequilibrium
steady state ρ, we choose the von Neumann entropy S =
− Tr(ρ log2 ρ). Notice that S = 0 if and only if the NESS
is a pure state. From the exact numerical solution of (5) with
η = ϕ one sees that indeed for the value of � predicted by (51)
the NESS becomes pure (Fig. 1). The spin current is maximal
in amplitude near this point but remains approximately equally
strong for all � � 4.

FIG. 1. von Neumann entropy S (upper curve) and steady-state
current j z (lower curve) versus dissipative amplitude � in the XXZ

chain. Parameters: J = 1,N = 4,η = ϕ = 4π/3, εR = −εL = 1/20.
The pure state with S = 0 describing a spin helix state is seen for the
predicted value � = 20| sin ϕ| ≈ 17.32.

It is also instructive to look at the NESS as a function of
the anisotropy � = cos θ , i.e., now we assume the dissipative
strength to satisfy (51), but not η. In this way, we see a
resonancelike behavior of various system observables around
the critical value of the anisotropy � = cos ϕ. Even for a small
chain of only four sites the spin current jz increases by an order
of magnitude and changes its sign near the critical anisotropy
(see Fig. 2). The von Neumann entropy vanishes at � = cos ϕ,
as expected. At the XXX point � = 1 the von Neumann
entropy is small but nonzero, in agreement with the notion
that the SHS is attained only asymptotically. Also, the current
at this point is as expected from the exact result [10]. For a
nonzero boundary twist � one obtains qualitatively similar
behavior (data not shown).

In order to get some insight into the resonancelike behavior
we note the following. For large amplitude �, the dissipative
part of the dynamics, which is quadratic in amplitudes,

FIG. 2. von Neumann entropy S (upper curve) and steady-state
current j z (lower curve) versus anisotropy �. Parameters: J = 1,N =
4,ϕ = 4π/3,� = 20 sin ϕ, and εR = −εL = 1/20. A pure SHS with
S = 0 is obtained for the predicted value � = cos ϕ = −0.5.
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becomes much larger than the unitary Hamiltonian part of the
dynamics, and as a result the boundary spins 1,N “freeze”
for any �. By this we mean that the states to which the
dissipation projects the boundary spins, which are mixed
states, become very close to completely polarized pure states.
At the left boundary, the spin 1 fixates approximately along the
vector (1,0,0) and at the right boundary approximately in the
direction [cos ϕ(N − 1), sin ϕ(N − 1),0] = (cos �, sin �,0).
Indeed, analyzing the kernel of the left dissipator, we find
that the distance from the actually targeted state and the pure
fully polarized state at the left boundary, characterized via ε :=
1 − Tr(ρ1)2 with the reduced density matrix ρ1 = Tr2,3,...Nρ,
is proportional to ε ≈ �−4 for large �. The same is true for
the right boundary. Now, if the polarization of the leftmost and
rightmost spins in the chain differ only slightly (in our example
this boundary twist angle is actually zero � = 0), then one
expects almost no current in the system for any �, since it
will generically favor a homogeneous spin configuration, the
neighboring spins at sites k,k + 1 being almost collinear. This
picture is well borne out by Fig. 2 , except close to the critical
value � = cos ϕ. At this point the spins arrange in the helix
structure with a nonzero winding number (2 in our case) which
gives rise to the resonance. For the exact helix spin state the
spin current takes the value jz = sin ϕ ≈ −0.866, close to the
maximal possible spin current |jz

max| = 1.

IV. HIGHER-SPIN CHAINS

The above results can be generalized to the case of spin s

with a maximal z component sz = s = (n − 1)/2. We focus
on spin chains with a conserved z component of the total spin.

A. Spin-s chains with conserved Sz component

In order to define the Hamiltonian H we introduce the
n-dimensional matrices Epq with matrix elements (Epq)mn =
δp,mδq,n. They satisfy the quadratic algebra

EpqEp′q ′ = δp′qE
pq ′

. (52)

From these we build the local operator

Sz
k :=

2s∑
p=0

(s − p)Epp

k (53)

for the z component of the local spin as well as the total z

component

Sz :=
N∑

k=1

Sz
k . (54)

We assume local nearest-neighbor interactions between spins,
i.e.,

H =
N−1∑
k=1

hk, (55)

hk =
2s∑

p,q,p′,q ′=0

c
pq

p′q ′E
pp′
k E

qq ′
k+1. (56)

This notation means that the nearest-neighbor interaction
matrix

h :=
2s∑

p,q,p′,q ′=0

c
pq

p′q ′E
pp′ ⊗ Eqq ′

(57)

of dimension n2 has matrix elements hpn+q+1,p′n+q ′+1 =
c
pq

p′q ′ . The coupling constants satisfy c
pq

p′q ′ = c̄
p′q ′
pq since H is

Hermitian. Moreover, we impose the ice rule [15]

c
pq

p′q ′ = 0, if p + q �= p′ + q ′, (58)

and the symmetry relation

c
pq

p′q ′ = c
qp

q ′p′ . (59)

The ice rule (58) ensures conservation [H, Ŝz] = 0 of the z

component of the total magnetization and (59) corresponds
to lattice reflection symmetry k ↔ N + 1 − k. We shall also
investigate the special case of spin-flip symmetry

c
pq

p′q ′ = c
2s−p2s−q

2s−p′2s−q ′ , (60)

which is the invariance under Sz ↔ −Sz. Requiring, in
addition, time-reversal symmetry gives the constraints

c
pq

p′q ′ = c̄p′q ′
pq (61)

on the phases of the coupling coefficients.

B. Spin-s helix state

We target a NESS in the form of a pure SHS |�〉〈�| with
|�〉 = |�1〉 ⊗ · · · ⊗ |�N 〉 and

|�k〉 = 1√∑2s
i=0 |ri |2

⎛
⎜⎜⎝

r0e
−iϕks

r1e
−iϕk(s−1)

. . .

r2se
ikϕs

⎞
⎟⎟⎠ (62)

with nonzero constants ri that can be complex. In order to
achieve this state in a similar fashion as discussed above for
s = 1/2, it is sufficient to require the generalization

H |�〉 = (FN − F1)|�〉 (63)

of the telescopic property (31) with diagonal matrices Fk =∑2s
p=0 fpE

pp

k .
This condition will be satisfied if

hk|�〉 = (Fk+1 − Fk)|�〉 (64)

is satisfied for all k. In order to see what this implies for the
coupling constants c

pq

p′q ′ we define the gauge transformation

Vϕ =
N∏

k=1

eiϕkSz
k (65)

and rewrite the SHS in the form

|�〉 = V −1
ϕ |�0〉, (66)

where |�0〉 represents the constant wave function. Conse-
quently, multiplying (64) by Vϕ from the left and noting that
Vϕ and F are diagonal matrices, we obtain

VϕhkV
−1
ϕ |�0〉 = (Fk+1 − Fk)|�0〉 (67)
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for all k. From the definition one finds VϕE
pp′
k V −1

ϕ = eik(p′−p)

and therefore, using the ice rule,

VϕhkV
−1
ϕ =

2s∑
p,q,p′,q ′=0

c
pq

p′q ′e
iϕ(q ′−q)E

pp′
k E

qq ′
k+1. (68)

Moreover, one has

E
pp′
k |�0〉 = rp′

rp

E
pp

k |�0〉. (69)

Therefore

VϕhkV
−1
ϕ |�0〉 =

2s∑
p,q=0

2s∑
p′,q ′=0

rp′rq ′

rprq

c
pq

p′q ′c
pq

p′q ′e
iϕ(q ′−q)

×E
pp

k E
qq

k+1|�0〉. (70)

On the other hand,

(Fk+1 − Fk)|�0〉 =
2s∑

p,q=0

(fq − fp)Epp

k E
qq

k+1|�0〉. (71)

Thus

2s∑
p′,q ′=0

rp′rq ′

rprq

c
pq

p′q ′e
iϕ(q ′−q) = fq − fp (72)

determines the coupling constants of the spin-s chain (55).
This linear system of equations for the coupling constants

of the Hamiltonian can be easily solved, which we demonstrate
for the first nontrivial case s = 1. Notice that the case s = 1/2
reproduces the XXZ Hamiltonian discussed earlier.

C. Spin-1 chain

The ice rule (58) allows for 19 nonvanishing coupling con-
stants. Hermiticity and reflection symmetry (59) leave as free
parameters the real-valued diagonal elements ap := c

pp
pp , b1 :=

c01
01 = c10

10, b2 := c02
02 = c20

20, b3 := c21
21 = c12

12, and the spin-flip
coefficients c1 := c01

10 = c10
01 ∈ R, c2 := c02

20 = c20
02 ∈ R, c3 :=

c12
21 = c21

12 ∈ R, d := c11
02 = c11

20, d̄ := c02
11 = c20

11. Requiring also
spin-flip symmetry (60) leads to the further relations a3 = a1,
b3 = b1, c3 = c1. Time-reversal symmetry then implies d̄ = d.

1. Computation of h for helix states

We define

δ = cos ϕ, ζ = r0r2/r2
1 . (73)

The parameters ϕ,ζ , or equivalently δ,ζ , characterize the spin-
1 helix state. In particular, one has 〈Sx

k 〉 = 2
√

2ζ/(1 + 2ζ )
cos [ϕ(k − 1)], 〈Sy

k 〉 = 2
√

2ζ/(1 + 2ζ ) sin [ϕ(k − 1)], 〈Sz
k〉 =

0, and the amplitude attains its maximum of full polarization

at ζ = 1/2. We exclude from the discussion the nonhelical
zero-current states ϕ = 0,π corresponding to |δ| = 1 and the
nonhelical states ζ = 0,∞ with vanishing spin polarization
〈�Sk〉 = �0.

The full set of equations (72) for the spin-1 SHS reads

a0 = a2 = 0, (74)

b1 + c1e
−iϕ + f0 − f1 = 0, (75)

b1 + c1e
iϕ + f1 − f0 = 0, (76)

b2 + c2e
−2iϕ + d̄ζ−1e−iϕ + f0 − f2 = 0, (77)

b2 + c2e
2iϕ + d̄ζ−1eiϕ + f2 − f0 = 0, (78)

a1 + dζ (eiϕ + e−iϕ) = 0, (79)

b3 + c3e
−iϕ + f1 − f2 = 0, (80)

b3 + c3e
iϕ + f2 − f1 = 0. (81)

Therefore

b1 = −c1δ, (82)

b3 = −c3δ, (83)

and a1 = −2dζδ, b2 = −c2 cos (2ϕ) − d̄ζ−1δ.
Since b2 and c2 are both real we conclude that also dζ and

d̄ζ−1 must be real, which implies that d has the negative phase
of ζ plus a multiple of π . For the coefficients fi one finds

f0 − f1 = ic1 sin ϕ, (84)

f1 − f2 = ic3 sin ϕ. (85)

In addition we have

f0 − f2 = ic2 sin (2ϕ) + id̄ζ−1 sin ϕ, (86)

which yields the consistency condition c2 sin (2ϕ) = (c1 +
c3 − d̄ζ−1) sin ϕ, which is automatically satisfied for the
irrelevant cases ϕ = 0,π and which otherwise yields

d = ζ̄ (c1 + c3 − 2c2δ), (87)

b2 = c2 − (c1 + c3)δ, (88)

a1 = 2δ|ζ |2(2c2δ − c1 − c3). (89)

Thus all parameters are expressed in terms of ζ,ϕ characteriz-
ing the helix state and the three real-valued parameters ci that
can be chosen freely.

With the shorthand hk ≡ hk(c1,c2,c3; ζ,ϕ) we arrive at

hk = −c1δ
(
E00

k E11
k+1 + E11

k E00
k+1

) − c3δ
(
E11

k E22
k+1 + E22

k E11
k+1

) + (
c2 − (c1 + c3)δ

)(
E00

k E22
k+1 + E22

k E00
k+1

)
+ 2δ|ζ |2(2c2δ − c1 − c3

)
E11

k E11
k+1 + c1

(
E01

k E10
k+1 + E10

k E01
k+1

) + c3
(
E12

k E21
k+1 + E21

k E12
k+1

)
+ c2

(
E02

k E20
k+1 + E20

k E02
k+1

) + (c1 + c3 − 2c2δ)
[
ζ
(
E01

k E21
k+1 + E21

k E01
k+1

) + ζ̄
(
E10

k E12
k+1 + E12

k E10
k+1

)]
. (90)
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We also note that

Fk = f11 + (f0 − f1)E00
k − (f1 − f2)E22

k = f11 + i sin ϕ
(
c1E

00
k − c3E

22
k

)
. (91)

The constant f1 is arbitrary, since only the difference Fk+1 − Fk and the telescopic sum
∑N−1

k=1 (Fk+1 − Fk) = FN − F1 appear
in calculations. Hence we can set f1 = 0.

For spin-flip symmetry and time-reversal symmetry where c3 = c1 and ζ̄ = ζ the local interaction reduces to

h∗
k(c1,c2; ζ,ϕ) = −c1δ

(
E00

k E11
k+1 + E11

k E00
k+1 + E11

k E22
k+1 + E22

k E11
k+1

) + (
c2 − 2c1δ

)(
E00

k E22
k+1 + E22

k E00
k+1

)
+ 4δζ 2

(
c2δ − c1

)
E11

k E11
k+1 + c1

(
E01

k E10
k+1 + E10

k E01
k+1 + E12

k E21
k+1 + E21

k E12
k+1

)
+ c2

(
E02

k E20
k+1 + E20

k E02
k+1

) + 2(c1 − c2δ)ζ
(
E01

k E21
k+1 + E21

k E01
k+1 + E10

k E12
k+1 + E12

k E10
k+1

)
, (92)

where h∗
k(c1,c2; ζ,ϕ) := hk(c1,c2,c1; ζ,ϕ). The corresponding divergence term is given by

Fk = ic1 sin (ϕ)
(
E00

k − E22
k

) = ic1 sin (ϕ)Sz
k . (93)

2. Integrable spin-1 chains with helix states

The local Hamiltonian (90) is a special case of the family of spin-1 chains surveyed in [50]. For general parameter values the
Hamiltonian built from the local Hamiltonians (90) is not integrable, which proves that the phenomenon of ballistic transport
in the helix state is not related to integrability. However, on a submanifold in parameter space one can identify two integrable
families which are special cases of the Uq[sl(2)]-symmetric Hamiltonian [51]:

H BMNR =
N−1∑
k=1

Ok(a,b; λ)

=
N−1∑
k=1

Õk(a,b; λ) + ia sin(2λ)
(
Sz

N − Sz
1

)
, (94)

where

Õk(a,b; λ) = a �Sk · �Sk+1 + b(�Sk · �Sk+1)2 − (a + b)i
a + b

2
sin(λ)

[(
Sx

k Sx
k+1 + S

y

k S
y

k+1 + cos (λ)Sz
kS

z
k+1

)(
Sz

k+1 − Sz
k

) + H.c.
]

+ 2(a − b) sin2(λ/2)
[(

Sx
k Sx

k+1 + S
y

k S
y

k+1

)
Sz

kS
z
k+1 + H.c.

] − sin2(λ)
{
2a

[(
Sz

k

)2 + (
Sz

k+1

)2 − 2
]

+ (a − b)
[
Sz

kS
z
k+1 − (

Sz
kS

z
k+1

)2]}
, (95)

with the spin-1 representation of SU(2) and deformation
parameter q = eiλ.

Comparing coefficients one finds

hk

[
c1, − c1,c1,

1

cos (ϕ/2)
,ϕ

]
= c1Õk(1, − 1,ϕ/2), (96)

which is the integrable Zamolodchikov-Fateev Hamilto-
nian [52]. Moreover, one has

hk

(
0,c2,0,

1

2 cos ϕ
,ϕ

)
= Õk(0,c2; 1)

= c2[(�Sk · �Sk+1)2 − 1], (97)

which is the biquadratic Hamiltonian of [53,54]. It is remark-
able that there is no significant difference in the properties
of the helix states for the integrable and the nonintegrable
cases. The integrable models, however, are of particular
interest, as they allow for a more detailed study, including
transport properties in the pure quantum case and possibly the
construction of nonlocal conserved quantities that are relevant
for the derivation of transport properties of these models [38].

V. CONCLUDING REMARKS

We have defined a family of spin helix states (SHS) with
twist angle ϕ in the xy plane between neighboring spins and
shown that these states arise as the exact stationary solution
of open spin-1 quantum chains with bulk conservation of the
z component of the magnetization, but boundary dissipation
given by suitably chosen two-parameter families of Lindblad
operators. These helix states are not in any sense close to
the quantum ground states of these spin chains. Nevertheless,
they are stationary under the Lindblad boundary driving that
targets the boundary spins in different directions, with a
boundary twist angle � = (N − 1)ϕ mod 2π . A nonzero
winding number K determined by ϕ = (� + 2πK)/(N − 1)
allows for a stationary spin current jz of order 1.

Specifically, for the spin-1/2 Heisenberg chain with
anisotropy parameter � = cos(η) the SHS occurs when η = ϕ.
As a function of η the stationary current jz for fixed ϕ shows
a resonancelike peak at the SHS value η = ϕ. If this matching
condition is satisfied then for any fixed anisotropy parameter
� = cos(η) the SHS carries a spin current jz = J sin (η). This
corresponds to ballistic transport, i.e., the current does not
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depend on system size, since for any N one can find a boundary
twist angle � ∈ [0,2π [ that supports this current. In fact, even
when the boundary twist � is zero the SHS carries a current of
order 1 at anisotropies of the form � = cos 2πK/(N − 1).
This is reminiscent of a result for the XXZ chain with
different Lindblad operator where the Drude weight has peaks
at anisotropies � = cos 2πm/n (m,n being integers), leading
to an overall fractal behavior of the Drude weight as a function
of � in the thermodynamic limit N → ∞ [38]. Whether this
Drude weight is related to an SHS is an open question.

We generalized the construction to higher spins. For spin 1
we have derived Hamiltonians which allow for the existence of
stationary spin-1 SHS under suitable dissipative dynamics at
the boundaries. The spin-1 Hamiltonians include the integrable
Zamolodchikov-Fateev chain [52] and also the biquadratic
Hamiltonian of [53,54]. We stress, however, that the existence
of SHS is not in any way related to integrability. Our solution
includes nonintegrable spin chains. This can most easily
be seen by noting that the local divergence condition that
underlies the construction of the SHS can be generalized to any
lattice that allows for the cancellation of all these terms in the
sum of the local Hamiltonians over the lattice. So, in particular,
one can construct SHS for two- and three-dimensional cubic

lattices. By the same token, we expect that one can generalize
the approach to nonintegrable Hamiltonians with next-nearest-
neighbor interactions and to Hamiltonians with valence-bond
eigenstates.

Generally, the properties of the SHS show, by comparing
with known results for other mechanisms of boundary driving
that the transport properties of spin chains depend qualitatively
on the choice of Lindblad operators. This is somewhat
puzzling, as the ballistic or other superdiffusive transport is
expected to be a bulk property of the chain, not a boundary
property. This is reminiscent of boundary-induced phase
transitions in classical stochastic particle systems [55,56].
Whether there is a deeper link is a further open question.

Note added. Recently we became aware of a paper where a
computational method for calculation of the Drude weight has
been proposed [57].
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[29] M. Žnidarič, Transport in a one-dimensional isotropic Heisen-
berg model at high temperature, J. Stat. Mech. (2011) P12008.

[30] G. M. Schütz, Diffusion-annihilation in the presence of a driving
field, J. Phys. A: Math. Gen. 28, 3405 (1995).

[31] N. Yamamoto, Parametrization of the feedback Hamiltonian
realizing a pure steady state, Phys. Rev. A 72, 024104 (2005).

[32] B. Kraus, H. P. Buchler, S. Diehl, A. Micheli and P. Zoller,
Preparation of entangled states by quantum Markov processes,
Phys. Rev. A 78, 042307 (2008).
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