000834342 001__ 834342 000834342 005__ 20240619092055.0 000834342 0247_ $$2doi$$a10.1021/acs.macromol.6b02495 000834342 0247_ $$2ISSN$$a0024-9297 000834342 0247_ $$2ISSN$$a1520-5835 000834342 0247_ $$2WOS$$aWOS:000398014800033 000834342 037__ $$aFZJ-2017-04317 000834342 082__ $$a540 000834342 1001_ $$0P:(DE-HGF)0$$aTsalikis, Dimitrios G.$$b0 000834342 245__ $$aMicroscopic Structure, Conformation, and Dynamics of Ring and Linear Poly(ethylene oxide) Melts from Detailed Atomistic Molecular Dynamics Simulations: Dependence on Chain Length and Direct Comparison with Experimental Data 000834342 260__ $$aWashington, DC$$bSoc.$$c2017 000834342 3367_ $$2DRIVER$$aarticle 000834342 3367_ $$2DataCite$$aOutput Types/Journal article 000834342 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1498568547_11337 000834342 3367_ $$2BibTeX$$aARTICLE 000834342 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000834342 3367_ $$00$$2EndNote$$aJournal Article 000834342 520__ $$aWe present results from very long (on the order of several microseconds) atomistic molecular dynamics (MD) simulations for the density, microscopic structure, conformation, and local and segmental dynamics of pure, strictly monodisperse ring and linear poly(ethylene oxide) (PEO) melts, ranging in molar mass from ∼5300 to ∼20 000 g/mol. The MD results are compared with recent experimental data for the chain center-of-mass self-diffusion coefficient and the normalized single-chain dynamic structure factor obtained from small-angle neutron scattering, neutron spin echo, and pulse-field gradient NMR, and remarkable qualitative and quantitative agreement is observed, despite certain subtle disagreements in important details regarding mainly internal ring motion (loop dynamics). A detailed normal-mode analysis allowed us to check the degree of consistency of ring PEO melt dynamics with the ring Rouse model and indicated a strong reduction of the normalized mode amplitudes for the smaller mode numbers (compared to the Rouse model scaling), combined with an undisturbed spectrum of Rouse relaxation rates. We have further measured the zero-shear rate viscosity η0 of the PEO-5k and PEO-10k rings at several temperatures and extracted their activation energies. These were compared with the activation energies extracted from the MD simulations via analysis of the temperature dependence of the corresponding Rouse relaxation times of the two rings in the same temperature range. 000834342 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000834342 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1 000834342 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2 000834342 588__ $$aDataset connected to CrossRef 000834342 7001_ $$0P:(DE-HGF)0$$aKoukoulas, Thanasis$$b1 000834342 7001_ $$0P:(DE-HGF)0$$aMavrantzas, Vlasis G.$$b2$$eCorresponding author 000834342 7001_ $$0P:(DE-HGF)0$$aPasquino, Rossana$$b3 000834342 7001_ $$0P:(DE-HGF)0$$aVlassopoulos, Dimitris$$b4 000834342 7001_ $$0P:(DE-Juel1)130902$$aPyckhout-Hintzen, Wim$$b5 000834342 7001_ $$0P:(DE-Juel1)131040$$aWischnewski, Andreas$$b6 000834342 7001_ $$0P:(DE-Juel1)130849$$aMonkenbusch, Michael$$b7 000834342 7001_ $$0P:(DE-Juel1)130917$$aRichter, Dieter$$b8 000834342 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/acs.macromol.6b02495$$gVol. 50, no. 6, p. 2565 - 2584$$n6$$p2565 - 2584$$tMacromolecules$$v50$$x1520-5835$$y2017 000834342 8564_ $$uhttps://juser.fz-juelich.de/record/834342/files/acs.macromol.6b02495.pdf$$yRestricted 000834342 8564_ $$uhttps://juser.fz-juelich.de/record/834342/files/acs.macromol.6b02495.gif?subformat=icon$$xicon$$yRestricted 000834342 8564_ $$uhttps://juser.fz-juelich.de/record/834342/files/acs.macromol.6b02495.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000834342 8564_ $$uhttps://juser.fz-juelich.de/record/834342/files/acs.macromol.6b02495.jpg?subformat=icon-180$$xicon-180$$yRestricted 000834342 8564_ $$uhttps://juser.fz-juelich.de/record/834342/files/acs.macromol.6b02495.jpg?subformat=icon-640$$xicon-640$$yRestricted 000834342 8564_ $$uhttps://juser.fz-juelich.de/record/834342/files/acs.macromol.6b02495.pdf?subformat=pdfa$$xpdfa$$yRestricted 000834342 909CO $$ooai:juser.fz-juelich.de:834342$$pVDB 000834342 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130902$$aForschungszentrum Jülich$$b5$$kFZJ 000834342 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131040$$aForschungszentrum Jülich$$b6$$kFZJ 000834342 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130849$$aForschungszentrum Jülich$$b7$$kFZJ 000834342 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130917$$aForschungszentrum Jülich$$b8$$kFZJ 000834342 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000834342 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1 000834342 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2 000834342 9141_ $$y2017 000834342 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000834342 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000834342 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOLECULES : 2015 000834342 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000834342 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000834342 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000834342 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000834342 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000834342 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000834342 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000834342 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000834342 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000834342 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACROMOLECULES : 2015 000834342 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x0 000834342 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1 000834342 980__ $$ajournal 000834342 980__ $$aVDB 000834342 980__ $$aI:(DE-Juel1)ICS-1-20110106 000834342 980__ $$aI:(DE-Juel1)JCNS-1-20110106 000834342 980__ $$aUNRESTRICTED 000834342 981__ $$aI:(DE-Juel1)IBI-8-20200312 000834342 981__ $$aI:(DE-Juel1)JCNS-1-20110106