
NestMC: a prototype multicompartment

neuronal network simulator for

high-performance computing

Alexander Peyser, Simulation Laboratory Neuroscience –

Bernstein Facility for Simulation and Database Technology

Institute for Advanced Simulation, Forschungszentrum Jülich

Jülich, Germany

Description of the Code

NestMC [3] is a prototype simulator for neuronal networks composed of mor-
phologically detailed neurons. This new code is being designed for the new
generation of HPC infrastructure composed of massively parallel and hetero-
geneous architectures. Planned architectures include ‘normal’ non-vectorized
CPUs, vectorized CPUs such as KNL, GPUs and other boosters such as FPGAs.

The code is composed of two fundamental elements (see Fig. 1C): the com-
putation of multicompartment neurons as passive cables with active electrical
elements including ion channels, and the exchange of resultant spike events be-
tween local and remote neurons connected at synapses. The computation of
neural cable properties is amenable to the various HPC parallelization, vector-
ization and booster capabilities, while massive spike exchange is a problem of
efficient communication, node local distribution and interleaving with compu-
tational tasks.

The code has been developed using ‘Modern C++’ [11], specifically the
C++11 standard [10]. Using the metaprogramming capabilities of contempo-
rary C++ in order to efficiently implement pluggable backends (Fig. 1A&B), we
are developing a framework for switching solvers and developing kernels opti-
mized for each targeted computational backend. This principle applies equally
to threading and communication modules: serial, OpenMP [7], TBB [8] and
HPX [5] threading models are possible, while communications can in principle
be handled locally, handled using MPI [4], or in the future possibly handled
by HPX [5]. This approach also limits the required external libraries to C++
STLs and the specific capabilities required for a given architecture. For Blue-
GeneQ (BGQ), this approach has limited us to the clang MPI compiler [2] which
sufficiently implements the C++ 11 standard for the current NestMC codebase.

Since a functional TBB library is not currently available for BGQ, for the
this Extreme Scaling Workshop we have used the OpenMP backend as well as
tested a thread pool implementation developed using C++ STL threads. How-
ever, the current OpenMP backend does not implement the ability to interleave
communications with computation, thus resulting in an extra barrier and a se-
rialization bottleneck during computation. This motivated the development of
a C++ thread pool library implementing a minimal subset of TBB task based

1



model
description
(NMODL &
recipes)

model
execution
loop

cell
simulation

spike
exchange

CPU
implementation

GPU
implementation

MPI
implementation

thread parallel
implementation

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

API API API

F.V.M.
solver

F.D.
solver

CPU scalar
kernels

CPU vector
kernels

GPU
kernels

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

xxxx

NMODL
specif cations

API API

A

B

C

Figure 1: A: API architecture. NestMC models can be C++ recipes, NMODL
compartment descriptions and other DSLs. The model execution loop is com-
posed of a spike communication task and cell computation tasks; for OpenMP,
communications and then computations are done, and for TBB or the threading
pool model, all tasks are interleaved. B: Backend architecture. NMODL and
other specifications are used to automatically build kernels for different archi-
tectures. Similarly, the architecture can use templated plugins for solvers and
thread models. C: Underlying computational model for neurons. Each neu-
ron is modeled as connected short cables that can be described via RC circuits
with added active elements. Compartment models are implemented by the cell
simulation in (A), and connections between neurons at synapses by the spike
exchange in (A). [6], Creative Commons Attribution-Share Alike 3.0 Unported

parallelization. For communications, we have used the MPI-2 communication
backend.

A randomly connected network for profiling purposes was defined using a
small JSON file for each simulation. No parallel output has yet been devel-
oped; output was limited to a file describing aggregate behavior such as total
number of spikes exchanged and a profiling output for analysis produced from
the handwritten profiling framework within the application. Future extensions
include a python frontend for describing networks and parallel IO for relevant
measurements such as spike timings and voltage measurements.

Our goal with the workshop was to test whether our current architecture is
scalable to 10k’s of nodes. During development, profiling has been focused on
node level and small network efficiency; code has been tested on clusters avail-
able at the Swiss Supercomputing Centre such as Piz Daint and Human Brain
Project resources such as Julia and Juron available at the Jülich Supercomput-

2



ing Centre at the Forschungszentrum Jülich. Before committing to a software
architecture that will need to be scalable for the next generation of supercom-
puting equipment, testing the scalability of the communication algorithms for
much larger systems using JUQUEEN was considered important, despite the
limitations of available compilers and libraries.

Results

During the workshop, we began by comparing the pure MPI backend to the
OpenMP+MPI backend. We used a network model with 8 cells/thread,
2000 synapses and 15 compartments/cell for relatively ‘simple’ Hodgkin and
Huxley neuron models [1]. Thus the number of spikes communicated globally
grows linearly with the number of nodes used. The timestep for integration
was 0.025 ms, and the total simulation time was 50 ms. Since the minimum
delay was 20 ms, this implies a total of 5 spike exchanges, each occurring ev-
ery 1/2 dt (one half the minimum delay in the system for spike communication
between neurons, which determines the communication timestep). Performance
was measured with a built-in profiler for rank 0, assuming that rank 0 is char-
acteristic of the system. For this profiler, the times for thread operations are
divided by the total number of threads so that the sum of all times is equal to
the total wall time.

During the communication phase for each time step, spikes events are ex-
changed with a call to MPI_Allgather. For pure MPI threading, this requires
that every thread have a copy of the global spike buffer. Preliminary testing
found that these memory demands outstripped available memory on JUQUEEN
at around 8092 nodes.

The current OpenMP+MPI backend does not interleave communication with
computations. Thus, the ‘computational time’ between communication time
steps (1/2 dt) is the communication and spike exchange time plus the parallel
computation time. For the tested configuration of 4 threads per rank, this means
that 3 out of 4 threads wait for the spike exchange step. We found that under
this configuration (see Table 1) good weak-scaling up to 2048 nodes, and better
than 50% weak scaling up to 8092 nodes. The simulations continued to increase
the number of neurons simulated faster than the increase in computation time
for the simulation, up to 28672 nodes. However for the last increase from 16384
to full JUQUEEN, the gain in computation of 1.75-fold neurons costs a 1.52-fold
increase in total computational time.

Time spent in MPI functions is negligible and ‘event’ time (computation
time) is small and constant. This increase is dominated by ‘communications’
time, which in this case is the wait time required before the next parallel com-
putation time begins. Thus, this O(nodes) term includes walking over all spikes
produced in the simulation during the communication timestep (which grows
with O(nodes)). Communication time for the communication thread is scaled
by 4 to account for computation threads’ wait times.

Development has been focused on the TBB backend using task-oriented par-
allelization which allows interleaving communication with computation. The
OpenMP measurements can be used as a ‘worst-case scenario’. With interlaced
jobs, the communication timestep is the maximum of communication time and
the longest time spent by a thread doing cell simulation computations. For the

3



nodes total efficiency communications MPI events

32 63.347753 1.000000 0.531771 0.000228 0.201864
64 63.659304 0.995106 0.829948 0.000225 0.200727

128 64.213774 0.986513 1.315700 0.000151 0.200540
256 65.061453 0.973660 2.294623 0.000391 0.201071
512 67.076769 0.944407 4.179481 0.000623 0.196835

1024 70.712083 0.895855 7.710518 0.001723 0.198596
2048 78.163655 0.810450 15.173421 0.000882 0.199653
4096 93.104669 0.680393 29.911602 0.002407 0.198081
8192 122.733964 0.516139 59.287230 0.013735 0.199668

16384 181.700285 0.348639 117.897971 0.018810 0.198835
28672 274.991168 0.230363 210.943898 0.018586 0.198643

Table 1: OpenMP weak scaling tests: 16 ranks/node, 4 OpenMP thread-
s/rank. Efficiency is measured relative to 32 nodes. Communication time is
scaled by 4 to represent the time spent by the communication thread and the
3 waiting computation threads. Since MPI times are negligible, the growth in
total time comes from processing the global spike buffer, composed of all spike
events from all nodes.

TBB backend, a more realistic worst-case scenario is interleaving communica-
tions with computations, using the limiting case of simple neurons with large
numbers of spikes per time step which can thus outstrip the ability of the algo-
rithm to hide communications. Our results during the workshop motivated the
development during that time of a thread pool implementation using C++11
thread objects (underlain by ‘pthreads’) and implementing the subset of TBB
used by NestMC currently, to allow testing such a scenario.

In Table 2, we were able to produce comparable results from 32 nodes up to
8192 nodes. For this case, we used 1 rank per node and 64 threads per rank,
reducing memory demands 16-fold for the global spike buffers. In the table,
we’ve scaled the communication time for the exchange task by 64 to represent
the minimum computational time for the half minimum delay timestep. Again,
MPI communication time is minimal, and event (computation) time is close to
constant. Up to 1024 nodes, the results show that communication time is fully
interleaved with computation time, leading to almost perfect weak-scaling. This
interleaving effect as compared to OpenMP can be seen in Fig. 2: thread wait
times as identified with the ’other’ curve for OpenMP follows communication
delay time for the entire range, but only begins to grow for C++ threads between
1024 and 2048 nodes. From 2048 nodes to 8192 nodes, weak-scaling falls off for
C++ thread pool; at 8192 nodes, we find a scaling efficiency of 61% as compared
to 52% for the OpenMP backend.

Conclusions

For OpenMP, the current architecture with 1 thread per rank handling all spike
communications and exchange scales well up to 2048 nodes, and continues to give
performance gains up to full JUQUEEN. Using threading pools that partially

4



nodes total efficiency communications MPI events

32 66.923973 1.000000 4.906073 0.000050 0.189069
64 66.702474 1.003321 5.408203 0.000028 0.188245

128 66.976243 0.999220 5.839075 0.000061 0.189016
256 67.008755 0.998735 7.813766 0.000123 0.189148
512 67.444161 0.992287 10.579938 0.000145 0.188981

1024 69.349252 0.965028 14.346233 0.000110 0.188718
2048 75.911964 0.881600 20.477371 0.000165 0.189956
4096 87.261659 0.766934 33.028073 0.000113 0.189260
8192 110.194867 0.607324 57.930969 0.000185 0.190285

Table 2: C++ threads weak scaling tests: 1 rank/node, 64 pthreads/rank.
Efficiency is measured relative to 32 nodes. Communication time is scaled by 64
to represent the minimum computational time between 1/2 dt (half the minimal
delay, which determines the commiunication timestep), since the communica-
tion time cannot be distributed over all threads in the current implementation.
If the time spent by all other (computation) tasks is exceeded by the serial
communication time, all other threads must wait for the communication task to
complete. Otherwise, 1/2 dt time is determined by the parallization of computa-
tion task. As in Table 1, since MPI times are negligible, the growth in total time
comes from processing the global spike buffer, composed of all spike events from
all nodes. However, the growth in timestep length starts with more nodes than
with the OpenMP backend, given the ability to fully interleave computation
with communications up to 1024 nodes.

implement the functionality of TBB, we see good weak-scaling up to 4096 nodes
and can expect to see performance gains up to JUQUEEN scale. For more com-
plex neuron models and morphologies which increase the ratio of computation
time to communication time, weak scaling should be significantly improved; the
cases tested are ’worst case scenarios’ relative to production runs.

With this workshop, we identified the limits of weak-scaling on the cur-
rent architecture. This motivated the development of a threading backend for
architectures where TBB is not available. Since the communication time is
dominated by processing the global spike buffers, a dry-run mode [9] has been
developed taking advantage of this performance profile, which will allow us to
estimate these results using negligible resources.

Acknowledgments

We would like to thank assistance from Yachao Shao and Wouter Klijn from
the SimLab Neuroscience. Additionally, Ben Cumming from the Swiss Super-
computing Centre (CSCS) is the Lead Software Developer for NestMC, and
Stuart Yates from CSCS is the Senior Software Developer and Mathematician
for NestMC. Ivan Martinez Perez from the Barcelona Supercomputing Centre
was responsible for the OpenMP backend.

The author would like to acknowledge the support of the Helmholtz As-
sociation through the portfolio theme “Supercomputing and Modeling for the

5



32 64 128 256 512 1024 2k 4k 8k

nodes

cthread

32 64 128 256 512 1024 2k 4k 8k 16k 32k

nodes

10-5

10-4

10-3

10-2

10-1

100

101

102

s
e
c
o
n
d
s

omp

elapsed

MPI

other

stepping

total

events

communication

communication delay

Figure 2: Scaling comparison between OpenMP and C++ threads: To-
tal elapsed time (wall time for the entire job) is blue circles, total MPI time is
green triangles pointing downward, other (thread wait times) is red triangles
pointing down, total stepping time (time spent in computations and commu-
nications) is blue triangles pointing left, total simulation time is purple arrows
pointing right, time spent in cell updates is yellow circles, unscaled communi-
cation time is black squares, and scaled communication time to predict possible
communication delays is blue pentagons. For OpenMP curves on the left, the
communication delay times are additive to all other parallel computations; for
C++ threads on the right, communication delay times is the minimum for delays
between communication steps. For OpenMP, ’other’ follows ’communication de-
lays’; for C++ threads, ’other’ only follows ’communication delays’ after 1024
nodes.

Human Brain” (SMHB). In addition, this project has received funding from
the European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 720270 (HBP SGA1).

References

[1] Proceedings of the physiological society. The Journal of Physiology,
117(suppl):1–14, 1952.

[2] Clang. http://clang.llvm.org.

[3] Benjamin Cumming, Sam Yates, Alexander Peyser,
Wouter Klijn, Pedro Valero Lara, and Ivan Martinez.
https://github.com/eth-cscs/nestmc-proto.

[4] Message P Forum. Mpi: A message-passing interface standard. Technical
report, Knoxville, TN, USA, 1994.

[5] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach, Adrian Serio,
and Dietmar Fey. Hpx: A task based programming model in a global

6



address space. In Proceedings of the 8th International Conference on Par-

titioned Global Address Space Programming Models, PGAS ’14, pages 6:1–
6:11, New York, NY, USA, 2014. ACM.

[6] Christof Koch and Idan Segev. Methods in neuronal modeling: from ions

to networks. MIT press, 1998.

[7] OpenMP Architecture Review Board. OpenMP application program inter-
face version 2.0, May 2002. www.openmp.org/mp-documents/cspec20.pdf.

[8] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, first edition, 2007.

[9] Wolfram Schenck and Susanne Kunkel. Dry-Run Mode for the Simulation
Phase of NEST. NEST 100k Meeting (INM-6), Jülich (Germany), 2014.

[10] SO/IEC. Iso international standard iso/iec 14882:2014(e) – pro-
gramming language c++. [working draft]. Technical report, Geneva,
Switzerland: International Organization for Standardization (ISO), 2014.
https://isocpp.org/std/the-standard.

[11] Bjarne Stroustrup and Herb Sutter. C++ Core Guidelines. 6 February
2017. http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.

7


