000834375 001__ 834375
000834375 005__ 20230310131312.0
000834375 0247_ $$2doi$$a10.1002/nla.2110
000834375 0247_ $$2ISSN$$a1070-5325
000834375 0247_ $$2ISSN$$a1099-1506
000834375 0247_ $$2WOS$$aWOS:000417584700007
000834375 037__ $$aFZJ-2017-04343
000834375 082__ $$a510
000834375 1001_ $$0P:(DE-HGF)0$$aBolten, Matthias$$b0
000834375 245__ $$aA multigrid perspective on the parallel full approximation scheme in space and time
000834375 260__ $$aNew York, NY [u.a.]$$bWiley$$c2017
000834375 3367_ $$2DRIVER$$aarticle
000834375 3367_ $$2DataCite$$aOutput Types/Journal article
000834375 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510322364_27057
000834375 3367_ $$2BibTeX$$aARTICLE
000834375 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834375 3367_ $$00$$2EndNote$$aJournal Article
000834375 520__ $$aFor the numerical solution of time-dependent partial differential equations, time-parallel methods have recently been shown to provide a promising way to extend prevailing strong-scaling limits of numerical codes. One of the most complex methods in this field is the “Parallel Full Approximation Scheme in Space and Time” (PFASST). PFASST already shows promising results for many use cases and benchmarks. However, a solid and reliable mathematical foundation is still missing. We show that, under certain assumptions, the PFASST algorithm can be conveniently and rigorously described as a multigrid-in-time method. Following this equivalence, first steps towards a comprehensive analysis of PFASST using blockwise local Fourier analysis are taken. The theoretical results are applied to examples of diffusive and advective type.
000834375 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000834375 536__ $$0G:(GEPRIS)450829162$$aDFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)$$c450829162$$x1
000834375 588__ $$aDataset connected to CrossRef
000834375 7001_ $$0P:(DE-Juel1)157768$$aMoser, Dieter$$b1$$eCorresponding author$$ufzj
000834375 7001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b2
000834375 773__ $$0PERI:(DE-600)2012602-5$$a10.1002/nla.2110$$gp. e2110 -$$n6$$pe2110$$tNumerical linear algebra with applications$$v24$$x1070-5325$$y2017
000834375 909CO $$ooai:juser.fz-juelich.de:834375$$pVDB
000834375 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157768$$aForschungszentrum Jülich$$b1$$kFZJ
000834375 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich$$b2$$kFZJ
000834375 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000834375 9141_ $$y2017
000834375 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000834375 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUMER LINEAR ALGEBR : 2015
000834375 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834375 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834375 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834375 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834375 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834375 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000834375 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834375 920__ $$lyes
000834375 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000834375 980__ $$ajournal
000834375 980__ $$aVDB
000834375 980__ $$aI:(DE-Juel1)JSC-20090406
000834375 980__ $$aUNRESTRICTED