001     834375
005     20230310131312.0
024 7 _ |a 10.1002/nla.2110
|2 doi
024 7 _ |a 1070-5325
|2 ISSN
024 7 _ |a 1099-1506
|2 ISSN
024 7 _ |a WOS:000417584700007
|2 WOS
037 _ _ |a FZJ-2017-04343
082 _ _ |a 510
100 1 _ |a Bolten, Matthias
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A multigrid perspective on the parallel full approximation scheme in space and time
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510322364_27057
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For the numerical solution of time-dependent partial differential equations, time-parallel methods have recently been shown to provide a promising way to extend prevailing strong-scaling limits of numerical codes. One of the most complex methods in this field is the “Parallel Full Approximation Scheme in Space and Time” (PFASST). PFASST already shows promising results for many use cases and benchmarks. However, a solid and reliable mathematical foundation is still missing. We show that, under certain assumptions, the PFASST algorithm can be conveniently and rigorously described as a multigrid-in-time method. Following this equivalence, first steps towards a comprehensive analysis of PFASST using blockwise local Fourier analysis are taken. The theoretical results are applied to examples of diffusive and advective type.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162)
|0 G:(GEPRIS)450829162
|c 450829162
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Moser, Dieter
|0 P:(DE-Juel1)157768
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Speck, Robert
|0 P:(DE-Juel1)132268
|b 2
773 _ _ |a 10.1002/nla.2110
|g p. e2110 -
|0 PERI:(DE-600)2012602-5
|n 6
|p e2110
|t Numerical linear algebra with applications
|v 24
|y 2017
|x 1070-5325
909 C O |o oai:juser.fz-juelich.de:834375
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157768
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132268
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUMER LINEAR ALGEBR : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21