Hauptseite > Publikationsdatenbank > A multigrid perspective on the parallel full approximation scheme in space and time > print |
001 | 834375 | ||
005 | 20230310131312.0 | ||
024 | 7 | _ | |a 10.1002/nla.2110 |2 doi |
024 | 7 | _ | |a 1070-5325 |2 ISSN |
024 | 7 | _ | |a 1099-1506 |2 ISSN |
024 | 7 | _ | |a WOS:000417584700007 |2 WOS |
037 | _ | _ | |a FZJ-2017-04343 |
082 | _ | _ | |a 510 |
100 | 1 | _ | |a Bolten, Matthias |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a A multigrid perspective on the parallel full approximation scheme in space and time |
260 | _ | _ | |a New York, NY [u.a.] |c 2017 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1510322364_27057 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a For the numerical solution of time-dependent partial differential equations, time-parallel methods have recently been shown to provide a promising way to extend prevailing strong-scaling limits of numerical codes. One of the most complex methods in this field is the “Parallel Full Approximation Scheme in Space and Time” (PFASST). PFASST already shows promising results for many use cases and benchmarks. However, a solid and reliable mathematical foundation is still missing. We show that, under certain assumptions, the PFASST algorithm can be conveniently and rigorously described as a multigrid-in-time method. Following this equivalence, first steps towards a comprehensive analysis of PFASST using blockwise local Fourier analysis are taken. The theoretical results are applied to examples of diffusive and advective type. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |x 0 |f POF III |
536 | _ | _ | |a DFG project 450829162 - Raum-Zeit-parallele Simulation multimodale Energiesystemen (450829162) |0 G:(GEPRIS)450829162 |c 450829162 |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Moser, Dieter |0 P:(DE-Juel1)157768 |b 1 |e Corresponding author |u fzj |
700 | 1 | _ | |a Speck, Robert |0 P:(DE-Juel1)132268 |b 2 |
773 | _ | _ | |a 10.1002/nla.2110 |g p. e2110 - |0 PERI:(DE-600)2012602-5 |n 6 |p e2110 |t Numerical linear algebra with applications |v 24 |y 2017 |x 1070-5325 |
909 | C | O | |o oai:juser.fz-juelich.de:834375 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)157768 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132268 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NUMER LINEAR ALGEBR : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|