000834415 001__ 834415
000834415 005__ 20240711085639.0
000834415 0247_ $$2doi$$a10.1007/s11666-017-0550-9
000834415 0247_ $$2ISSN$$a1059-9630
000834415 0247_ $$2ISSN$$a1544-1016
000834415 0247_ $$2WOS$$aWOS:000402743300006
000834415 037__ $$aFZJ-2017-04373
000834415 041__ $$aEnglish
000834415 082__ $$a670
000834415 1001_ $$0P:(DE-Juel1)159410$$aBergholz, Jan$$b0$$eCorresponding author
000834415 245__ $$aFabrication of Oxide Dispersion Strengthened Bond Coats with Low Al$_{2}$O$_{3}$ Content
000834415 260__ $$aBoston, Mass.$$bSpringer$$c2017
000834415 3367_ $$2DRIVER$$aarticle
000834415 3367_ $$2DataCite$$aOutput Types/Journal article
000834415 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1500013364_23115
000834415 3367_ $$2BibTeX$$aARTICLE
000834415 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834415 3367_ $$00$$2EndNote$$aJournal Article
000834415 520__ $$aNanoscale oxide dispersions have long been used to increase the oxidation and wear resistance of alloys used as bond coatings in thermal barrier coatings. Their manufacturing via mechanical alloying is often accompanied by difficulties regarding their particle size, homogeneous distribution of the oxide dispersions inside the powder, involving considerable costs, due to cold welding of the powder during milling. A significant improvement in this process can be achieved by the use of process control agent (PCA) to achieve the critical balance between cold welding and fracturing, thereby enhancing the process efficiency. In this investigation, the influence of the organic additive stearic acid on the manufacturing process of Al2O3-doped CoNiCrAlY powder was investigated. Powders were fabricated via mechanical alloying at different milling times and PCA concentrations. The results showed a decrease in particle size, without hindering the homogeneous incorporation of the oxide dispersions. Two powders manufactured with 0.5 and 1.0 wt.% PCA were deposited by high velocity oxygen fuel (HVOF) spraying. Results showed that a higher content of elongated particles in the powder with the higher PCA content led to increased surface roughness, porosity and decreased coating thickness, with areas without embedded oxide particles.
000834415 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000834415 588__ $$aDataset connected to CrossRef
000834415 7001_ $$0P:(DE-HGF)0$$aPint, Bruce A.$$b1
000834415 7001_ $$0P:(DE-HGF)0$$aUnocic, Kinga A.$$b2
000834415 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b3
000834415 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-017-0550-9$$gVol. 26, no. 5, p. 868 - 879$$n5$$p868 - 879$$tJournal of thermal spray technology$$v26$$x1059-9630$$y2017
000834415 8564_ $$uhttps://juser.fz-juelich.de/record/834415/files/10.1007_s11666-017-0550-9.pdf$$yRestricted
000834415 8564_ $$uhttps://juser.fz-juelich.de/record/834415/files/10.1007_s11666-017-0550-9.gif?subformat=icon$$xicon$$yRestricted
000834415 8564_ $$uhttps://juser.fz-juelich.de/record/834415/files/10.1007_s11666-017-0550-9.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834415 8564_ $$uhttps://juser.fz-juelich.de/record/834415/files/10.1007_s11666-017-0550-9.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834415 8564_ $$uhttps://juser.fz-juelich.de/record/834415/files/10.1007_s11666-017-0550-9.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834415 8564_ $$uhttps://juser.fz-juelich.de/record/834415/files/10.1007_s11666-017-0550-9.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834415 909CO $$ooai:juser.fz-juelich.de:834415$$pVDB
000834415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159410$$aForschungszentrum Jülich$$b0$$kFZJ
000834415 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b3$$kFZJ
000834415 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000834415 9141_ $$y2017
000834415 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000834415 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ THERM SPRAY TECHN : 2015
000834415 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834415 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834415 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834415 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834415 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834415 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834415 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834415 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000834415 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834415 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000834415 980__ $$ajournal
000834415 980__ $$aVDB
000834415 980__ $$aI:(DE-Juel1)IEK-1-20101013
000834415 980__ $$aUNRESTRICTED
000834415 981__ $$aI:(DE-Juel1)IMD-2-20101013