000834417 001__ 834417
000834417 005__ 20240711085627.0
000834417 0247_ $$2doi$$a10.1007/s11666-017-0559-0
000834417 0247_ $$2ISSN$$a1059-9630
000834417 0247_ $$2ISSN$$a1544-1016
000834417 0247_ $$2WOS$$aWOS:000402743300001
000834417 037__ $$aFZJ-2017-04375
000834417 041__ $$aEnglish
000834417 082__ $$a670
000834417 1001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b0$$eCorresponding author
000834417 245__ $$aMonitoring and Improving the Reliability of Plasma Spray Processes
000834417 260__ $$aBoston, Mass.$$bSpringer$$c2017
000834417 3367_ $$2DRIVER$$aarticle
000834417 3367_ $$2DataCite$$aOutput Types/Journal article
000834417 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1500013668_23120
000834417 3367_ $$2BibTeX$$aARTICLE
000834417 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000834417 3367_ $$00$$2EndNote$$aJournal Article
000834417 520__ $$aMonitoring and improving of process reliability are prevalent issues in thermal spray technology. They are intended to accomplish specific quality characteristics by controlling the process. For this, implicit approaches are in demand to rapidly conclude on relevant coating properties, i.e., they are not directly measured, but it is assumed that the monitored variables are in fact suggestive for them. Such monitoring can be performed in situ (during the running process) instead of measuring coating characteristics explicitly (directly) and ex situ (after the process). Implicit approaches can be based on extrinsic variables (set from outside) as well as on intrinsic parameters (internal, not directly adjustable) having specific advantages and disadvantages, each. In this work, the effects of atmospheric plasma spray process variables are systemized in process schemes. On this basis, different approaches to contribute to improved process reliability are described and assessed paying particular attention to in-flight particle diagnostics. Finally, a new test applying spray bead analysis is introduced and first results are presented.
000834417 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000834417 588__ $$aDataset connected to CrossRef
000834417 7001_ $$0P:(DE-Juel1)129653$$aRauwald, Karl-Heinz$$b1$$ufzj
000834417 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b2$$ufzj
000834417 7001_ $$0P:(DE-Juel1)129670$$aVassen, Robert$$b3$$ufzj
000834417 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-017-0559-0$$gVol. 26, no. 5, p. 799 - 810$$n5$$p799 - 810$$tJournal of thermal spray technology$$v26$$x1544-1016$$y2017
000834417 8564_ $$uhttps://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.pdf$$yRestricted
000834417 8564_ $$uhttps://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.gif?subformat=icon$$xicon$$yRestricted
000834417 8564_ $$uhttps://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000834417 8564_ $$uhttps://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.jpg?subformat=icon-180$$xicon-180$$yRestricted
000834417 8564_ $$uhttps://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.jpg?subformat=icon-640$$xicon-640$$yRestricted
000834417 8564_ $$uhttps://juser.fz-juelich.de/record/834417/files/10.1007_s11666-017-0559-0.pdf?subformat=pdfa$$xpdfa$$yRestricted
000834417 909CO $$ooai:juser.fz-juelich.de:834417$$pVDB
000834417 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b0$$kFZJ
000834417 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129653$$aForschungszentrum Jülich$$b1$$kFZJ
000834417 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich$$b2$$kFZJ
000834417 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b3$$kFZJ
000834417 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000834417 9141_ $$y2017
000834417 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000834417 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ THERM SPRAY TECHN : 2015
000834417 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000834417 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000834417 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000834417 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000834417 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000834417 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000834417 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000834417 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000834417 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000834417 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000834417 980__ $$ajournal
000834417 980__ $$aVDB
000834417 980__ $$aI:(DE-Juel1)IEK-1-20101013
000834417 980__ $$aUNRESTRICTED
000834417 981__ $$aI:(DE-Juel1)IMD-2-20101013